Guo Bo, Zeng Jicai, Brusseau Mark L
Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, Arizona, USA.
Department of Environmental Science, University of Arizona, Tucson, Arizona, USA.
Water Resour Res. 2020 Feb;56(2). doi: 10.1029/2019wr026667. Epub 2020 Jan 10.
Per- and Polyfluoroalkyl Substances (PFAS) are emerging contaminants of critical concern. As surfactants, PFAS tend to accumulate at air-water interfaces and may stay in the vadose zone for long times before contaminating groundwater. Yet not well understood, the extent of retention in the vadose zone has critical implications for risk management and remediation strategies. We present the first mathematical model that accounts for surfactant-induced flow and solid-phase and air-water interfacial adsorption. We apply the model to simulate PFOS (a PFAS compound of primary concern) transport in the vadose zone at a model fire-training area site impacted by Aqueous Film-Forming Foam (AFFF). Air-water interfacial adsorption is shown to have a significant impact-amplified by the low water content due to gravity drainage-total retardation factors range from 233 to 1355 for the sand and 146 to 792 for the soil used in the study. The simulations illustrate it can take several decades or longer for PFOS to reach groundwater. Counterintuitively, the lower water content in the sand-due to stronger drainage and weaker capillary retention-leads to retardation factors greater than for the soil. Also, most PFOS is adsorbed at air-water interfaces with only 1-2% in the aqueous phase. The implications include 1) fine-texture materials could have lower retardation factors than sand due to higher retained water content, 2) soil PFAS concentrations are likely to be orders of magnitude higher than those in groundwater at source zones. Both implications are consistent with recent field observations at hundreds of AFFF-impacted sites.
全氟和多氟烷基物质(PFAS)是备受关注的新兴污染物。作为表面活性剂,PFAS往往会在空气 - 水界面处积聚,并可能在污染地下水之前在渗流带中长期停留。然而,渗流带中的滞留程度尚未得到充分了解,这对风险管理和修复策略具有关键影响。我们提出了第一个考虑表面活性剂诱导流动以及固 - 相和空气 - 水界面吸附的数学模型。我们应用该模型来模拟全氟辛烷磺酸(一种主要关注的PFAS化合物)在一个受水成膜泡沫(AFFF)影响的模型火灾训练场地的渗流带中的运移。结果表明,空气 - 水界面吸附具有显著影响,由于重力排水导致的低含水量会放大这种影响——对于研究中使用的沙子,总阻滞因子范围为233至1355,对于土壤则为146至792。模拟结果表明,全氟辛烷磺酸可能需要数十年或更长时间才能到达地下水。与直觉相反,沙子中较低的含水量(由于更强的排水作用和较弱的毛细滞留作用)导致阻滞因子大于土壤。此外,大多数全氟辛烷磺酸吸附在空气 - 水界面上;只有1% - 2%处于水相中。这意味着:1)由于较高的持水量,质地细腻的材料可能比沙子具有更低的阻滞因子;2)在源区,土壤中PFAS的浓度可能比地下水中的浓度高几个数量级。这两个结论都与最近在数百个受AFFF影响的场地的现场观测结果一致。