Argüelles C A, Aurisano A J, Batell B, Berger J, Bishai M, Boschi T, Byrnes N, Chatterjee A, Chodos A, Coan T, Cui Y, de Gouvêa A, Denton P B, De Roeck A, Flanagan W, Forero D V, Gandrajula R P, Hatzikoutelis A, Hostert M, Jones B, Kayser B J, Kelly K J, Kim D, Kopp J, Kubik A, Lang K, Lepetic I, Machado P A N, Moura C A, Olness F, Park J C, Pascoli S, Prakash S, Rogers L, Safa I, Schneider A, Scholberg K, Shin S, Shoemaker I M, Sinev G, Smithers B, Sousa A, Sui Y, Takhistov V, Thomas J, Todd J, Tsai Y-D, Tsai Y-T, Yu J, Zhang C
Massachusetts Institute of Technology, Cambridge, MA, United States of America.
Rep Prog Phys. 2020 Nov 21;83(12):124201. doi: 10.1088/1361-6633/ab9d12.
The combination of the high intensity proton beam facilities and massive detectors for precision measurements of neutrino oscillation parameters including the charge-parity violating (CPV) phase will open the door to help make beyond the standard model (BSM) physics reachable even in low energy regimes in the accelerator-based experiments. Large-mass detectors with highly precise tracking and energy measurements, excellent timing resolution, and low energy thresholds will enable the searches for BSM phenomena from cosmogenic origin, as well. Therefore, it is also conceivable that BSM topics in the next-generation neutrino experiments could be the dominant physics topics in the foreseeable future, as the precision of the neutrino oscillation parameter and CPV measurements continue to improve.This paper provides a review of the current landscape of BSM theory in neutrino experiments in two selected areas of the BSM topics-dark matter and neutrino related BSM-and summarizes the current results from existing neutrino experiments to set benchmarks for both theory and experiment. This paper then provides a review of upcoming neutrino experiments throughout the next 10 to 15 year time scale and their capabilities to set the foundation for potential reach in BSM physics in the two aforementioned themes. An important outcome of this paper is to ensure theoretical and simulation tools exist to carry out studies of these new areas of physics, from the first day of the experiments, such as Deep Underground Neutrino Experiment in the U.S. and Hyper-Kamiokande Experiment in Japan.
高强度质子束设施与用于精确测量中微子振荡参数(包括电荷宇称破坏(CPV)相位)的大型探测器相结合,将为在基于加速器的实验中,即便在低能区实现超出标准模型(BSM)的物理研究打开大门。具备高精度径迹和能量测量、出色的时间分辨率以及低能量阈值的大型探测器,也将能够探寻源自宇宙成因的BSM现象。因此,随着中微子振荡参数和CPV测量精度不断提高,下一代中微子实验中的BSM主题在可预见的未来成为主导物理主题也是可以想象的。本文综述了在BSM主题的两个选定领域——暗物质和与中微子相关的BSM——中微子实验里BSM理论的当前概况,并总结了现有中微子实验的当前结果,为理论和实验设定基准。接着,本文综述了未来10到15年时间尺度内即将开展的中微子实验及其能力,以便为上述两个主题中BSM物理的潜在可达性奠定基础。本文的一个重要成果是确保从实验的第一天起就有理论和模拟工具来开展对这些新物理领域的研究,比如美国的深层地下中微子实验和日本的超神冈实验。