Suppr超能文献

基于不确定性量化的超高分辨率 q 空间深度学习。

Super-Resolved q-Space deep learning with uncertainty quantification.

机构信息

School of Information and Electronics, Beijing Institute of Technology, 5 Zhongguancun South Street, Beijing, China.

Department of Radiology, Peking University Third Hospital, Beijing, China.

出版信息

Med Image Anal. 2021 Jan;67:101885. doi: 10.1016/j.media.2020.101885. Epub 2020 Oct 26.

Abstract

Diffusion magnetic resonance imaging (dMRI) provides a noninvasive method for measuring brain tissue microstructure. q-Space deep learning(q-DL) methods have been developed to accurately estimate tissue microstructure from dMRI scans acquired with a reduced number of diffusion gradients. In these methods, deep networks are trained to learn the mapping directly from diffusion signals to tissue microstructure. However, the quality of tissue microstructure estimation can be limited not only by the reduced number of diffusion gradients but also by the low spatial resolution of typical dMRI acquisitions. Therefore, in this work we extend q-DL to super-resolved tissue microstructure estimation and propose super-resolvedq-DL (SR-q-DL), where deep networks are designed to map low-resolution diffusion signals undersampled in the q-space to high-resolution tissue microstructure. Specifically, we use a patch-based strategy, where a deep network takes low-resolution patches of diffusion signals as input and outputs high-resolution tissue microstructure patches. The high-resolution patches are then combined to obtain the final high-resolution tissue microstructure map. Motivated by existing q-DL methods, we integrate the sparsity of diffusion signals in the network design, which comprises two functional components. The first component computes sparse representation of diffusion signals for the low-resolution input patch, and the second component maps the low-resolution sparse representation to high-resolution tissue microstructure. The weights in the two components are learned jointly and the trained network performs end-to-end tissue microstructure estimation. In addition to SR-q-DL, we further propose probabilistic SR-q-DL, which can quantify the uncertainty of the network output as well as achieve improved estimation accuracy. In probabilistic SR-q-DL, a deep ensemble strategy is used. Specifically, the deep network for SR-q-DL is revised to produce not only tissue microstructure estimates but also the uncertainty of the estimates. Then, multiple deep networks are trained and their results are fused for the final prediction of high-resolution tissue microstructure and uncertainty quantification. The proposed method was evaluated on two independent datasets of brain dMRI scans. Results indicate that our approach outperforms competing methods in terms of estimation accuracy. In addition, uncertainty measures provided by our method correlate with estimation errors, which indicates potential application of the proposed uncertainty quantification method in brain studies.

摘要

扩散磁共振成像(dMRI)提供了一种非侵入性的方法来测量脑组织的微观结构。q 空间深度学习(q-DL)方法已经被开发出来,可以从使用较少扩散梯度采集的 dMRI 扫描中准确估计组织微观结构。在这些方法中,深度网络被训练直接从扩散信号到组织微观结构的映射中学习。然而,组织微观结构估计的质量不仅受到扩散梯度数量的减少的限制,还受到典型 dMRI 采集的低空间分辨率的限制。因此,在这项工作中,我们将 q-DL 扩展到超分辨率组织微观结构估计,并提出了超分辨率 q-DL(SR-q-DL),其中深度网络被设计为将 q 空间中欠采样的低分辨率扩散信号映射到高分辨率组织微观结构。具体来说,我们使用基于补丁的策略,其中深度网络以低分辨率的扩散信号补丁作为输入,并输出高分辨率的组织微观结构补丁。然后,将高分辨率补丁组合以获得最终的高分辨率组织微观结构图。受现有 q-DL 方法的启发,我们在网络设计中整合了扩散信号的稀疏性,这包括两个功能组件。第一个组件为低分辨率输入补丁计算扩散信号的稀疏表示,第二个组件将低分辨率稀疏表示映射到高分辨率组织微观结构。两个组件中的权重是联合学习的,训练后的网络可以进行端到端的组织微观结构估计。除了 SR-q-DL,我们还进一步提出了概率 SR-q-DL,它可以量化网络输出的不确定性,同时实现更高的估计精度。在概率 SR-q-DL 中,使用了深度集成策略。具体来说,修改了用于 SR-q-DL 的深度网络,不仅可以生成组织微观结构的估计值,还可以生成估计值的不确定性。然后,训练多个深度网络,并融合它们的结果,以最终预测高分辨率组织微观结构和不确定性量化。该方法在两个独立的大脑 dMRI 扫描数据集上进行了评估。结果表明,我们的方法在估计精度方面优于竞争方法。此外,我们方法提供的不确定性度量与估计误差相关,这表明所提出的不确定性量化方法在大脑研究中的潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验