Suppr超能文献

利用维格纳-威利分布进行梁的损伤识别与量化

Damage Identification and Quantification in Beams Using Wigner-Ville Distribution.

作者信息

Katunin Andrzej

机构信息

Department of Fundamentals of Machinery Design, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland.

出版信息

Sensors (Basel). 2020 Nov 19;20(22):6638. doi: 10.3390/s20226638.

Abstract

The paper presents the novel method of damage identification and quantification in beams using the Wigner-Ville distribution (WVD). The presented non-parametric method is characterized by high sensitivity to a local stiffness decrease due to the presence of damage, comparable with the sensitivity of the wavelet-based approaches, however the lack of selection of the parameters of the algorithm, like wavelet type and its order, and the possibility of reduction of the boundary effect make this method advantageous with respect to the mentioned wavelet-based approaches. Moreover, the direct relation between the energy density resulting from the application of WVD to modal rotations make it possible to quantify damage in terms of its width and depth. The results obtained for the numerical modal rotations of a beam presented in this paper, simulating the results of non-destructive testing achievable with the shearography non-destructive testing method, confirm high accuracy in localization of a damage as well as quantification of its dimensions. It was shown that the WVD-based method is suitable for detection of damage represented by the stiffness decrease of 1% and can be identified and quantified with a high precision. The presented results of quantification allowed extracting information on damage width and depth.

摘要

本文提出了一种利用维格纳-威利分布(WVD)对梁中的损伤进行识别和量化的新方法。所提出的非参数方法对由于损伤导致的局部刚度降低具有高灵敏度,与基于小波的方法的灵敏度相当,然而该算法缺乏像小波类型及其阶数等参数选择,并且减少边界效应的可能性使得该方法相对于上述基于小波的方法具有优势.此外,将WVD应用于模态旋转所产生的能量密度之间的直接关系使得可以根据损伤的宽度和深度对损伤进行量化。本文给出了梁的数值模态旋转结果,模拟了剪切散斑无损检测方法可实现的无损检测结果,证实了在损伤定位及其尺寸量化方面的高精度。结果表明,基于WVD的方法适用于检测刚度降低1%所代表的损伤,并且可以高精度地进行识别和量化。所给出的量化结果允许提取有关损伤宽度和深度的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bac7/7699564/4bfbd1abd894/sensors-20-06638-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验