Suppr超能文献

高海拔脊椎动物低氧适应中的表型可塑性、遗传同化和遗传补偿。

Phenotypic plasticity, genetic assimilation, and genetic compensation in hypoxia adaptation of high-altitude vertebrates.

机构信息

School of Biological Sciences, University of Nebraska, Lincoln, NE, USA.

Department of Biology, McMaster University, Hamilton, ON, Canada.

出版信息

Comp Biochem Physiol A Mol Integr Physiol. 2021 Mar;253:110865. doi: 10.1016/j.cbpa.2020.110865. Epub 2020 Dec 7.

Abstract

Important questions about mechanisms of physiological adaptation concern the role of phenotypic plasticity and the extent to which acclimatization responses align with genetic responses to selection. Such questions can be addressed in experimental studies of high-altitude vertebrates by investigating how mechanisms of acclimatization to hypoxia in lowland natives may influence genetic adaptation to hypoxia in highland natives. Evidence from high-altitude mammals suggest that evolved changes in some physiological traits involved canalization of the ancestral acclimatization response to hypoxia (genetic assimilation), a mechanism that results in an evolved reduction in plasticity. In addition to cases where adaptive plasticity may have facilitated genetic adaptation, evidence also suggests that some physiological changes in high-altitude natives are the result of selection to mitigate maladaptive plastic responses to hypoxia (genetic compensation). Examples of genetic compensation involve the attenuation of hypoxic pulmonary hypertension in Tibetan humans and other mammals native to high altitude. Here we discuss examples of adaptive physiological phenotypes in high-altitude natives that may have evolved by means of genetic assimilation or genetic compensation.

摘要

关于生理适应机制的重要问题涉及表型可塑性的作用,以及驯化反应在多大程度上与遗传对选择的反应相一致。通过研究低地原生物种对低氧环境的驯化机制如何影响高地原生物种对低氧环境的遗传适应,可以在对高海拔脊椎动物的实验研究中解决这些问题。来自高海拔哺乳动物的证据表明,一些与低氧环境相关的生理特征的进化变化涉及到对低氧环境的祖先驯化反应的管化(遗传同化),这种机制导致了可塑性的进化减少。除了适应性可塑性可能促进遗传适应的情况外,证据还表明,高海拔原生物种的一些生理变化是为了减轻对低氧环境的适应不良的可塑性反应(遗传补偿)而选择的结果。遗传补偿的例子包括藏人及其他高海拔原生物种的低氧性肺动脉高血压的衰减。在这里,我们讨论了高海拔原生物种中可能通过遗传同化或遗传补偿进化而来的适应性生理表型的例子。

相似文献

1
Phenotypic plasticity, genetic assimilation, and genetic compensation in hypoxia adaptation of high-altitude vertebrates.
Comp Biochem Physiol A Mol Integr Physiol. 2021 Mar;253:110865. doi: 10.1016/j.cbpa.2020.110865. Epub 2020 Dec 7.
2
Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates.
J Exp Biol. 2010 Dec 15;213(Pt 24):4125-36. doi: 10.1242/jeb.048181.
3
Control of breathing and the circulation in high-altitude mammals and birds.
Comp Biochem Physiol A Mol Integr Physiol. 2015 Aug;186:66-74. doi: 10.1016/j.cbpa.2014.10.009. Epub 2014 Oct 23.
4
Life Ascending: Mechanism and Process in Physiological Adaptation to High-Altitude Hypoxia.
Annu Rev Ecol Evol Syst. 2019 Nov;50:503-526. doi: 10.1146/annurev-ecolsys-110218-025014. Epub 2019 Sep 3.
5
Local adaptation, plasticity, and evolved resistance to hypoxic cold stress in high-altitude deer mice.
Proc Natl Acad Sci U S A. 2024 Oct 8;121(41):e2412526121. doi: 10.1073/pnas.2412526121. Epub 2024 Oct 1.
7
Population genetic aspects and phenotypic plasticity of ventilatory responses in high altitude natives.
Respir Physiol Neurobiol. 2007 Sep 30;158(2-3):151-60. doi: 10.1016/j.resp.2007.03.004. Epub 2007 Mar 12.
8
Hemoglobin-oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend?
J Exp Biol. 2016 Oct 15;219(Pt 20):3190-3203. doi: 10.1242/jeb.127134.
9
Ventilation and hypoxic ventilatory response of Tibetan and Aymara high altitude natives.
Am J Phys Anthropol. 1997 Dec;104(4):427-47. doi: 10.1002/(SICI)1096-8644(199712)104:4<427::AID-AJPA1>3.0.CO;2-P.
10
Altitude acclimatization, hemoglobin-oxygen affinity, and circulatory oxygen transport in hypoxia.
Mol Aspects Med. 2022 Apr;84:101052. doi: 10.1016/j.mam.2021.101052. Epub 2021 Dec 5.

引用本文的文献

2
Phenotypic Variation of Oak Species ( spp.) Reveals Adaptive Strategies Across Natural and Semi-Artificial Oak Stands.
Ecol Evol. 2025 Jun 16;15(6):e71217. doi: 10.1002/ece3.71217. eCollection 2025 Jun.
4
Genomic analysis reveals population structure and selection signatures in plateau dairy cattle.
BMC Genomics. 2025 Mar 12;26(1):240. doi: 10.1186/s12864-025-11335-0.
6
Placental Adaptation to Hypoxia: The Case of High-Altitude Pregnancies.
Int J Environ Res Public Health. 2025 Feb 4;22(2):214. doi: 10.3390/ijerph22020214.
7
Four new genome sequences of the Pallas's cat (): an insight into the patterns of within-species variability.
Front Genet. 2024 Dec 9;15:1463774. doi: 10.3389/fgene.2024.1463774. eCollection 2024.
8
Plasticity and environment-specific relationships between gene expression and fitness in Saccharomyces cerevisiae.
Nat Ecol Evol. 2024 Dec;8(12):2184-2194. doi: 10.1038/s41559-024-02582-7. Epub 2024 Nov 13.

本文引用的文献

1
Pulmonary hypertension is attenuated and ventilation-perfusion matching is maintained during chronic hypoxia in deer mice native to high altitude.
Am J Physiol Regul Integr Comp Physiol. 2021 Jun 1;320(6):R800-R811. doi: 10.1152/ajpregu.00282.2020. Epub 2021 Apr 7.
2
Physiological Genomics of Adaptation to High-Altitude Hypoxia.
Annu Rev Anim Biosci. 2021 Feb 16;9:149-171. doi: 10.1146/annurev-animal-072820-102736. Epub 2020 Nov 23.
3
Life Ascending: Mechanism and Process in Physiological Adaptation to High-Altitude Hypoxia.
Annu Rev Ecol Evol Syst. 2019 Nov;50:503-526. doi: 10.1146/annurev-ecolsys-110218-025014. Epub 2019 Sep 3.
4
Biochemical pedomorphosis and genetic assimilation in the hypoxia adaptation of Tibetan antelope.
Sci Adv. 2020 Jun 17;6(25):eabb5447. doi: 10.1126/sciadv.abb5447. eCollection 2020 Jun.
5
Coordinated changes across the O transport pathway underlie adaptive increases in thermogenic capacity in high-altitude deer mice.
Proc Biol Sci. 2020 May 27;287(1927):20192750. doi: 10.1098/rspb.2019.2750. Epub 2020 May 20.
7
Maladaptive phenotypic plasticity in cardiac muscle growth is suppressed in high-altitude deer mice.
Evolution. 2018 Dec;72(12):2712-2727. doi: 10.1111/evo.13626. Epub 2018 Nov 1.
8
Evolved Mechanisms of Aerobic Performance and Hypoxia Resistance in High-Altitude Natives.
Annu Rev Physiol. 2019 Feb 10;81:561-583. doi: 10.1146/annurev-physiol-021317-121527. Epub 2018 Sep 26.
9
Evolved changes in breathing and CO sensitivity in deer mice native to high altitudes.
Am J Physiol Regul Integr Comp Physiol. 2018 Nov 1;315(5):R1027-R1037. doi: 10.1152/ajpregu.00220.2018. Epub 2018 Sep 5.
10
Circulatory mechanisms underlying adaptive increases in thermogenic capacity in high-altitude deer mice.
J Exp Biol. 2017 Oct 15;220(Pt 20):3616-3620. doi: 10.1242/jeb.164491. Epub 2017 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验