Suppr超能文献

大麦芽啤酒饱满度的化学计量学建模。

Chemometric modeling of palate fullness in lager beers.

机构信息

Technical University of Munich, Institute of Brewing and Beverage Technology, Research Group Raw Material Based Brewing and Beverage Technology, 85354 Freising, Germany.

Technical University of Munich, Institute of Brewing and Beverage Technology, Research Group Raw Material Based Brewing and Beverage Technology, 85354 Freising, Germany.

出版信息

Food Chem. 2021 Apr 16;342:128253. doi: 10.1016/j.foodchem.2020.128253. Epub 2020 Oct 1.

Abstract

Palate fullness and mouthfeel of beer are key attributes of sensory beer quality. Non-volatile substances and molar mass fractions influence sensory perceptions of palate fullness and mouthfeel. However, systematic correlations between sensory attributes and native beer compounds have not been evaluated within the concentration range found in lager beer. This article reports a chemometric analysis of 41 lager beers by evaluating analytical data of beer compositions, palate fullness, and mouthfeel descriptors. AF4-MALS-dRI indicated high variability in the macromolecular compositions of classical lager beers. Screened beers were clustered into groups differing significantly in palate fullness intensity and macromolecular distribution. Significant correlations were found between palate fullness and macromolecular fractions and beer composition parameters: original gravity, viscosity, indices of macromolecular distribution, total nitrogen (p < 0.001), and β-glucan (p < 0.01). Thus, a model was built using partial least square regression (PLS) analysis to predict the palate fullness intensity in beers (R = 0.7993). This model can be used as a guideline by brewers to control palate fullness and mouthfeel.

摘要

啤酒的饱满度和口感是其感官质量的关键属性。非挥发性物质和摩尔质量分数会影响人们对饱满度和口感的感官感知。然而,在拉格啤酒中发现的浓度范围内,还没有系统地评估感官属性与天然啤酒化合物之间的关系。本文通过评估啤酒成分、饱满度和口感描述符的分析数据,对 41 种拉格啤酒进行了化学计量学分析。AF4-MALS-dRI 表明,经典拉格啤酒的高分子组成具有很高的可变性。筛选出的啤酒根据饱满度强度和高分子分布的不同被分为不同的组。在口感饱满度和高分子分数与啤酒成分参数之间发现了显著的相关性:原麦汁浓度、粘度、高分子分布指数、总氮(p<0.001)和β-葡聚糖(p<0.01)。因此,使用偏最小二乘回归(PLS)分析建立了一个预测啤酒口感饱满度强度的模型(R=0.7993)。该模型可以作为酿酒师控制口感饱满度和口感的指南。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验