School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom.
Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, United Kingdom.
Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):31134-31141. doi: 10.1073/pnas.2014531117. Epub 2020 Nov 23.
Metamaterials assemble multiple subwavelength elements to create structures with extraordinary physical properties (1-4). Optical metamaterials are rare in nature and no natural acoustic metamaterials are known. Here, we reveal that the intricate scale layer on moth wings forms a metamaterial ultrasound absorber (peak absorption = 72% of sound intensity at 78 kHz) that is 111 times thinner than the longest absorbed wavelength. Individual scales act as resonant (5) unit cells that are linked via a shared wing membrane to form this metamaterial, and collectively they generate hard-to-attain broadband deep-subwavelength absorption. Their collective absorption exceeds the sum of their individual contributions. This sound absorber provides moth wings with acoustic camouflage (6) against echolocating bats. It combines broadband absorption of all frequencies used by bats with light and ultrathin structures that meet aerodynamic constraints on wing weight and thickness. The morphological implementation seen in this evolved acoustic metamaterial reveals enticing ways to design high-performance noise mitigation devices.
超材料通过组合多个亚波长元件来创造具有非凡物理特性的结构(1-4)。光学超材料在自然界中很少见,目前也没有已知的天然声超材料。在这里,我们揭示了飞蛾翅膀上错综复杂的鳞片层形成了一种超材料超声吸收体(在 78 kHz 时,吸收峰值为声强的 72%),其厚度比最长吸收波长薄 111 倍。单个鳞片作为共振(5)单元,通过共享的翅膀膜连接在一起,形成这种超材料,它们共同产生难以实现的宽带深亚波长吸收。它们的集体吸收超过了各自贡献的总和。这种吸声体为飞蛾翅膀提供了针对回声定位蝙蝠的声学伪装(6)。它结合了蝙蝠使用的所有频率的宽带吸收以及轻质和超薄结构,这些结构满足了机翼重量和厚度对空气动力学的限制。在这种进化的声超材料中看到的形态实现为设计高性能降噪装置提供了诱人的方法。