Jansen Wouter, Steckel Jan
Cosys-Lab, Faculty of Applied Engineering, University of Antwerp, 2020 Antwerpen, Belgium.
Flanders Make Strategic Research Centre, 3920 Lommel, Belgium.
Biomimetics (Basel). 2024 May 28;9(6):321. doi: 10.3390/biomimetics9060321.
In this paper, we introduce SonoNERFs, a novel approach that adapts Neural Radiance Fields (NeRFs) to model and understand the echolocation process in bats, focusing on the challenges posed by acoustic data interpretation without phase information. Leveraging insights from the field of optical NeRFs, our model, termed SonoNERF, represents the acoustic environment through Neural Reflectivity Fields. This model allows us to reconstruct three-dimensional scenes from echolocation data, obtained by simulating how bats perceive their surroundings through sound. By integrating concepts from biological echolocation and modern computational models, we demonstrate the SonoNERF's ability to predict echo spectrograms for unseen echolocation poses and effectively reconstruct a mesh-based and energy-based representation of complex scenes. Our work bridges a gap in understanding biological echolocation and proposes a methodological framework that provides a first-order model of how scene understanding might arise in echolocating animals. We demonstrate the efficacy of the SonoNERF model on three scenes of increasing complexity, including some biologically relevant prey-predator interactions.
在本文中,我们介绍了SonoNERFs,这是一种新颖的方法,它使神经辐射场(NeRFs)适用于对蝙蝠的回声定位过程进行建模和理解,重点关注无相位信息的声学数据解释所带来的挑战。利用光学NeRFs领域的见解,我们的模型SonoNERF通过神经反射率场来表示声学环境。该模型使我们能够从回声定位数据中重建三维场景,这些数据是通过模拟蝙蝠如何通过声音感知周围环境而获得的。通过整合生物回声定位和现代计算模型的概念,我们展示了SonoNERF预测未见回声定位姿态的回声频谱图以及有效重建复杂场景的基于网格和基于能量表示的能力。我们的工作弥合了在理解生物回声定位方面的差距,并提出了一个方法框架,该框架提供了一个关于回声定位动物如何产生场景理解的一阶模型。我们在三个复杂度不断增加的场景上展示了SonoNERF模型的有效性,包括一些与生物相关的猎物-捕食者相互作用。