Natural Resources Canada - Canadian Forest Service, Great Lakes Forestry Centre, Research Scientist, P6A 2E5, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada.
Natural Resources Canada - Canadian Forest Service, Great Lakes Forestry Centre, Chief, Landscape Analysis and Applications, P6A 2E5 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada.
Sci Data. 2020 Nov 23;7(1):411. doi: 10.1038/s41597-020-00737-2.
We present historical monthly spatial models of temperature and precipitation generated from the North American dataset version "j" from the National Oceanic and Atmospheric Administration's (NOAA's) National Centres for Environmental Information (NCEI). Monthly values of minimum/maximum temperature and precipitation for 1901-2016 were modelled for continental United States and Canada. Compared to similar spatial models published in 2006 by Natural Resources Canada (NRCAN), the current models show less error. The Root Generalized Cross Validation (RTGCV), a measure of the predictive error of the surfaces akin to a spatially averaged standard predictive error estimate, averaged 0.94 °C for maximum temperature models, 1.3 °C for minimum temperature and 25.2% for total precipitation. Mean prediction errors for the temperature variables were less than 0.01 °C, using all stations. In comparison, precipitation models showed a dry bias (compared to recorded values) of 0.5 mm or 0.7% of the surface mean. Mean absolute predictive errors for all stations were 0.7 °C for maximum temperature, 1.02 °C for minimum temperature, and 13.3 mm (19.3% of the surface mean) for monthly precipitation.
我们呈现了由美国国家海洋和大气管理局(NOAA)的国家环境信息中心(NCEI)的“j”版本的北美数据集生成的历史逐月温度和降水空间模型。1901-2016 年美国大陆和加拿大的逐月最低/最高温度和降水值被建模。与 2006 年加拿大自然资源部(NRCAN)发布的类似空间模型相比,当前模型的误差更小。根广义交叉验证(RTGCV)是一种衡量曲面预测误差的方法,类似于空间平均标准预测误差估计,最高温度模型的平均误差为 0.94°C,最低温度模型的平均误差为 1.3°C,总降水量的平均误差为 25.2%。使用所有站点时,温度变量的平均预测误差小于 0.01°C。相比之下,降水模型显示出与记录值相比 0.5 毫米或表面平均值的 0.7%的干燥偏差。所有站点的平均绝对预测误差分别为最高温度为 0.7°C,最低温度为 1.02°C,每月降水为 13.3 毫米(表面平均值的 19.3%)。