Suppr超能文献

将神经功率谱参数化为周期性和非周期性成分。

Parameterizing neural power spectra into periodic and aperiodic components.

机构信息

Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA.

Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.

出版信息

Nat Neurosci. 2020 Dec;23(12):1655-1665. doi: 10.1038/s41593-020-00744-x. Epub 2020 Nov 23.

Abstract

Electrophysiological signals exhibit both periodic and aperiodic properties. Periodic oscillations have been linked to numerous physiological, cognitive, behavioral and disease states. Emerging evidence demonstrates that the aperiodic component has putative physiological interpretations and that it dynamically changes with age, task demands and cognitive states. Electrophysiological neural activity is typically analyzed using canonically defined frequency bands, without consideration of the aperiodic (1/f-like) component. We show that standard analytic approaches can conflate periodic parameters (center frequency, power, bandwidth) with aperiodic ones (offset, exponent), compromising physiological interpretations. To overcome these limitations, we introduce an algorithm to parameterize neural power spectra as a combination of an aperiodic component and putative periodic oscillatory peaks. This algorithm requires no a priori specification of frequency bands. We validate this algorithm on simulated data, and demonstrate how it can be used in applications ranging from analyzing age-related changes in working memory to large-scale data exploration and analysis.

摘要

电生理信号表现出周期性和非周期性特征。周期性振荡与许多生理、认知、行为和疾病状态有关。新出现的证据表明,非周期性成分具有推测的生理解释,并且随着年龄、任务需求和认知状态的变化而动态变化。电生理神经活动通常使用经典定义的频带进行分析,而不考虑非周期性(1/f 样)成分。我们表明,标准的分析方法可以将周期性参数(中心频率、功率、带宽)与非周期性参数(偏移量、指数)混淆,从而影响生理解释。为了克服这些限制,我们引入了一种算法,将神经功率谱参数化为非周期性成分和推测周期性振荡峰值的组合。该算法不需要预先指定频带。我们在模拟数据上验证了该算法,并展示了如何将其应用于从分析与年龄相关的工作记忆变化到大规模数据探索和分析的各种应用中。

相似文献

1
Parameterizing neural power spectra into periodic and aperiodic components.
Nat Neurosci. 2020 Dec;23(12):1655-1665. doi: 10.1038/s41593-020-00744-x. Epub 2020 Nov 23.
2
Electrophysiological Frequency Band Ratio Measures Conflate Periodic and Aperiodic Neural Activity.
eNeuro. 2020 Dec 22;7(6). doi: 10.1523/ENEURO.0192-20.2020. Print 2020 Nov-Dec.
3
Separating Neural Oscillations from Aperiodic 1/f Activity: Challenges and Recommendations.
Neuroinformatics. 2022 Oct;20(4):991-1012. doi: 10.1007/s12021-022-09581-8. Epub 2022 Apr 7.
4
Oscillation-Based Connectivity Architecture Is Dominated by an Intrinsic Spatial Organization, Not Cognitive State or Frequency.
J Neurosci. 2021 Jan 6;41(1):179-192. doi: 10.1523/JNEUROSCI.2155-20.2020. Epub 2020 Nov 17.
5
Task induced modulation of neural oscillations in electrophysiological brain networks.
Neuroimage. 2012 Dec;63(4):1918-30. doi: 10.1016/j.neuroimage.2012.08.012. Epub 2012 Aug 14.
6
Decomposing age effects in EEG alpha power.
Cortex. 2023 Apr;161:116-144. doi: 10.1016/j.cortex.2023.02.002. Epub 2023 Feb 22.
9
Periodic and aperiodic neural activity displays age-dependent changes across early-to-middle childhood.
Dev Cogn Neurosci. 2022 Apr;54:101076. doi: 10.1016/j.dcn.2022.101076. Epub 2022 Jan 22.
10
Approaches to characterizing oscillatory burst detection algorithms for electrophysiological recordings.
J Neurosci Methods. 2023 May 1;391:109865. doi: 10.1016/j.jneumeth.2023.109865. Epub 2023 Apr 21.

引用本文的文献

1
40 Hz Audiovisual Stimulation Improves Sustained Attention and Related Brain Oscillations.
bioRxiv. 2025 Aug 25:2025.08.25.671937. doi: 10.1101/2025.08.25.671937.
7
Cortical travelling waves relate to variation in personality traits.
Imaging Neurosci (Camb). 2025 Aug 20;3. doi: 10.1162/IMAG.a.119. eCollection 2025.
8
Unlocking deep relaxation: the power of rhythmic breathing on brain rhythms.
Npj Ment Health Res. 2025 Aug 23;4(1):39. doi: 10.1038/s44184-025-00156-4.
10
The effect of depression on the peak alpha frequency as a biomarker of pain sensitivity.
Neurobiol Pain. 2025 Aug 6;18:100193. doi: 10.1016/j.ynpai.2025.100193. eCollection 2025 Jul-Dec.

本文引用的文献

2
Linked Sources of Neural Noise Contribute to Age-related Cognitive Decline.
J Cogn Neurosci. 2020 Sep;32(9):1813-1822. doi: 10.1162/jocn_a_01584. Epub 2020 May 19.
3
Memantine Effects on Electroencephalographic Measures of Putative Excitatory/Inhibitory Balance in Schizophrenia.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2020 Jun;5(6):562-568. doi: 10.1016/j.bpsc.2020.02.004. Epub 2020 Feb 22.
4
EEG power spectral slope differs by ADHD status and stimulant medication exposure in early childhood.
J Neurophysiol. 2019 Dec 1;122(6):2427-2437. doi: 10.1152/jn.00388.2019. Epub 2019 Oct 16.
5
Functionally Distinct Gamma Range Activity Revealed by Stimulus Tuning in Human Visual Cortex.
Curr Biol. 2019 Oct 21;29(20):3345-3358.e7. doi: 10.1016/j.cub.2019.08.004. Epub 2019 Oct 3.
6
Cycle-by-cycle analysis of neural oscillations.
J Neurophysiol. 2019 Aug 1;122(2):849-861. doi: 10.1152/jn.00273.2019. Epub 2019 Jul 3.
7
Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics.
Neuron. 2019 Mar 20;101(6):1181-1194.e13. doi: 10.1016/j.neuron.2019.01.017. Epub 2019 Feb 7.
10
Alpha Oscillations Reduce Temporal Long-Range Dependence in Spontaneous Human Brain Activity.
J Neurosci. 2018 Jan 17;38(3):755-764. doi: 10.1523/JNEUROSCI.0831-17.2017. Epub 2017 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验