Suppr超能文献

一项贝叶斯反应自适应剂量探索与比较疗效试验。

A Bayesian response-adaptive dose-finding and comparative effectiveness trial.

作者信息

Heath Anna, Yaskina Maryna, Pechlivanoglou Petros, Rios David, Offringa Martin, Klassen Terry P, Poonai Naveen, Pullenayegum Eleanor

机构信息

Child Health Evaluative Sciences, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.

Division of Biostatistics, University of Toronto, Toronto, ON, Canada.

出版信息

Clin Trials. 2021 Feb;18(1):61-70. doi: 10.1177/1740774520965173. Epub 2020 Nov 24.

Abstract

BACKGROUND/AIMS: Combinations of treatments that have already received regulatory approval can offer additional benefit over Each of the treatments individually. However, trials of these combinations are lower priority than those that develop novel therapies, which can restrict funding, timelines and patient availability. This article develops a novel trial design to facilitate the evaluation of New combination therapies. This trial design combines elements of phase II and phase III trials to reduce the burden of evaluating combination therapies, while also maintaining a feasible sample size. This design was developed for a randomised trial that compares the properties of three combination doses of ketamine and dexmedetomidine, given intranasally, to ketamine delivered intravenously for children undergoing a closed reduction for a fracture or dislocation.

METHODS

This trial design uses response-adaptive randomisation to evaluate different dose combinations and increase the information collected for successful novel drug combinations. The design then uses Bayesian dose-response modelling to undertake a comparative effectiveness analysis for the most successful dose combination against a relevant comparator. We used simulation methods determine the thresholds for adapting the trial and making conclusions. We also used simulations to evaluate the probability of selecting the dose combination with the highest true effectiveness the operating characteristics of the design and its Bayesian predictive power.

RESULTS

With 410 participants, five interim updates of the randomisation ratio and a probability of effectiveness of 0.93, 0.88 and 0.83 for the three dose combinations, we have an 83% chance of randomising the largest number of patients to the drug with the highest probability of effectiveness. Based on this adaptive randomisation procedure, the comparative effectiveness analysis has a type I error of less than 5% and a 93% chance of correcting concluding non-inferiority, when the probability of effectiveness for the optimal combination therapy is 0.9. In this case, the trial has a greater than 77% chance of meeting its dual aims of dose-finding and comparative effectiveness. Finally, the Bayesian predictive power of the trial is over 90%.

CONCLUSIONS

By simultaneously determining the optimal dose and collecting data on the relative effectiveness of an intervention, we can minimise administrative burden and recruitment time for a trial. This will minimise the time required to get effective, safe combination therapies to patients quickly. The proposed trial has high potential to meet the dual study objectives within a feasible overall sample size.

摘要

背景/目的:已获得监管批准的治疗组合可能比单一治疗具有更多益处。然而,这些组合疗法的试验优先级低于开发新疗法的试验,这可能会限制资金、时间安排和患者可及性。本文提出了一种新型试验设计,以促进对新组合疗法的评估。该试验设计结合了II期和III期试验的要素,以减轻评估组合疗法的负担,同时保持可行的样本量。该设计是为一项随机试验开发的,该试验比较了三种鼻内给予的氯胺酮和右美托咪定组合剂量与静脉给予氯胺酮用于骨折或脱位闭合复位儿童的特性。

方法

该试验设计使用适应性随机化来评估不同的剂量组合,并增加为成功的新药物组合收集的信息。然后,该设计使用贝叶斯剂量反应模型对最成功的剂量组合与相关对照进行比较有效性分析。我们使用模拟方法确定调整试验和得出结论的阈值。我们还使用模拟来评估选择具有最高真实有效性的剂量组合的概率、设计的操作特征及其贝叶斯预测能力。

结果

对于410名参与者,随机化比例进行五次中期更新,三种剂量组合的有效性概率分别为0.93、0.88和0.83,我们有83%的机会将最多数量的患者随机分配到有效性概率最高的药物组。基于这种适应性随机化程序,当最佳组合疗法的有效性概率为0.9时,比较有效性分析的I类错误小于5%,得出非劣效性结论的概率为93%。在这种情况下,试验有超过77%的机会实现剂量探索和比较有效性的双重目标。最后,试验的贝叶斯预测能力超过90%。

结论

通过同时确定最佳剂量并收集干预相对有效性的数据,我们可以将试验的管理负担和招募时间降至最低。这将最大限度地减少为患者快速提供有效、安全的组合疗法所需的时间。拟议的试验在可行的总体样本量内实现双重研究目标的潜力很大。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验