Suppr超能文献

具有成本效益的临床试验设计:贝叶斯序贯模型在ProFHER实用试验中的应用。

Cost-effective clinical trial design: Application of a Bayesian sequential model to the ProFHER pragmatic trial.

作者信息

Forster Martin, Brealey Stephen, Chick Stephen, Keding Ada, Corbacho Belen, Alban Andres, Pertile Paolo, Rangan Amar

机构信息

Department of Statistical Sciences 'Paolo Fortunati', University of Bologna, Bologna, Italy.

Department of Economics and Related Studies, University of York, York, UK.

出版信息

Clin Trials. 2021 Dec;18(6):647-656. doi: 10.1177/17407745211032909. Epub 2021 Aug 18.

Abstract

BACKGROUND/AIMS: There is growing interest in the use of adaptive designs to improve the efficiency of clinical trials. We apply a Bayesian decision-theoretic model of a sequential experiment using cost and outcome data from the ProFHER pragmatic trial. We assess the model's potential for delivering value-based research.

METHODS

Using parameter values estimated from the ProFHER pragmatic trial, including the costs of carrying out the trial, we establish when the trial could have stopped, had the model's value-based stopping rule been used. We use a bootstrap analysis and simulation study to assess a range of operating characteristics, which we compare with a fixed sample size design which does not allow for early stopping.

RESULTS

We estimate that application of the model could have stopped the ProFHER trial early, reducing the sample size by about 14%, saving about 5% of the research budget and resulting in a technology recommendation which was the same as that of the trial. The bootstrap analysis suggests that the expected sample size would have been 38% lower, saving around 13% of the research budget, with a probability of 0.92 of making the same technology recommendation decision. It also shows a large degree of variability in the trial's sample size.

CONCLUSIONS

Benefits to trial cost stewardship may be achieved by monitoring trial data as they accumulate and using a stopping rule which balances the benefit of obtaining more information through continued recruitment with the cost of obtaining that information. We present recommendations for further research investigating the application of value-based sequential designs.

摘要

背景/目的:人们越来越关注采用适应性设计来提高临床试验的效率。我们应用一种基于贝叶斯决策理论的序贯试验模型,该模型使用来自ProFHER实用试验的成本和结果数据。我们评估该模型在开展基于价值的研究方面的潜力。

方法

利用从ProFHER实用试验估计的参数值,包括开展试验的成本,我们确定如果使用该模型基于价值的停止规则,试验本可以在何时停止。我们使用自抽样分析和模拟研究来评估一系列操作特征,并将其与不允许提前停止的固定样本量设计进行比较。

结果

我们估计应用该模型本可以使ProFHER试验提前停止,样本量减少约14%,节省约5%的研究预算,并得出与试验相同的技术推荐。自抽样分析表明,预期样本量会降低38%,节省约13%的研究预算,做出相同技术推荐决策的概率为0.92。它还显示出试验样本量存在很大程度的变异性。

结论

通过在试验数据积累时对其进行监测,并使用一种停止规则来平衡通过持续招募获取更多信息的益处与获取该信息的成本,可能会实现对试验成本管理的益处。我们提出了进一步研究的建议,以调查基于价值的序贯设计的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e77/8592107/efbf4a43ebd6/10.1177_17407745211032909-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验