Suppr超能文献

基于混合低秩逼近和二阶张量总变分的光学相干断层扫描图像重建。

Reconstruction of Optical Coherence Tomography Images Using Mixed Low Rank Approximation and Second Order Tensor Based Total Variation Method.

出版信息

IEEE Trans Med Imaging. 2021 Mar;40(3):865-878. doi: 10.1109/TMI.2020.3040270. Epub 2021 Mar 2.

Abstract

This paper proposes a mixed low-rank approximation and second-order tensor-based total variation (LRSOTTV) approach for the super-resolution and denoising of retinal optical coherence tomography (OCT) images through effective utilization of nonlocal spatial correlations and local smoothness properties. OCT imaging relies on interferometry, which explains why OCT images suffer from a high level of noise. In addition, data subsampling is conducted during OCT A-scan and B-scan acquisition. Therefore, using effective super-resolution algorithms is necessary for reconstructing high-resolution clean OCT images. In this paper, a low-rank regularization approach is proposed for exploiting nonlocal self-similarity prior to OCT image reconstruction. To benefit from the advantages of the redundancy of multi-slice OCT data, we construct a third-order tensor by extracting the nonlocal similar three-dimensional blocks and grouping them by applying the k-nearest-neighbor method. Next, the nuclear norm is used as a regularization term to shrink the singular values of the constructed tensor in the non-local correlation direction. Further, the regularization approaches of the first-order tensor-based total variation (FOTTV) and SOTTV are proposed for better preservation of retinal layers and suppression of artifacts in OCT images. The alternative direction method of multipliers (ADMM) technique is then used to solve the resulting optimization problem. Our experiments show that integrating SOTTV instead of FOTTV into a low-rank approximation model can achieve noticeably improved results. Our experimental results on the denoising and super-resolution of OCT images demonstrate that the proposed model can provide images whose numerical and visual qualities are higher than those obtained by using state-of-the-art methods.

摘要

本文提出了一种混合低秩逼近和二阶张量总变差(LRSOTTV)方法,通过有效利用非局部空间相关性和局部平滑性,对视网膜光学相干断层扫描(OCT)图像进行超分辨率和去噪。OCT 成像依赖于干涉测量法,这就是为什么 OCT 图像会受到高水平噪声的影响。此外,在 OCT A 扫描和 B 扫描采集过程中进行数据下采样。因此,使用有效的超分辨率算法对于重建高分辨率清洁 OCT 图像是必要的。在本文中,提出了一种低秩正则化方法,用于在 OCT 图像重建之前利用非局部自相似性先验。为了受益于多切片 OCT 数据冗余的优势,我们通过提取非局部相似的三维块并应用 k-最近邻方法对其进行分组,构建一个三阶张量。接下来,使用核范数作为正则化项,在非局部相关方向上收缩所构建张量的奇异值。此外,还提出了基于一阶张量的总变差(FOTTV)和 SOTTV 的正则化方法,以更好地保持视网膜层并抑制 OCT 图像中的伪影。然后使用交替方向乘子法(ADMM)技术来求解所得优化问题。我们的实验表明,将 SOTTV 集成到低秩逼近模型中而不是 FOTTV 中可以获得明显改善的结果。我们在 OCT 图像去噪和超分辨率方面的实验结果表明,所提出的模型可以提供质量高于现有方法的图像,无论是在数值上还是在视觉上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验