Suppr超能文献

三维环状伪影去除算法结合低秩张量分解与空间序列全变分正则化及其在相衬显微层析成像中的应用。

3D ring artifacts removal algorithm combined low-rank tensor decomposition with spatial-sequential total variation regularization and its application in phase-contrast microtomography.

机构信息

School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China.

The School of Science, Tianjin University of Technology and Education, Tianjin, China.

出版信息

Med Phys. 2022 Jan;49(1):393-410. doi: 10.1002/mp.15387. Epub 2021 Dec 14.

Abstract

PURPOSE

High-resolution synchrotron radiation X-ray phase contrast microtomography (PC-μCT) images often suffer from severe ring artifacts, which are mainly caused by undesirable responses of detector elements. In the medical imaging field, the existence of ring artifacts can lead to degraded visual quality and can directly affect diagnosis accuracy. Thus, removing or at least effectively reducing ring artifacts is indispensable.

METHOD

The existing ring artifacts removal algorithms mainly focus on two-dimensional (matrix-based) priors, and these algorithms fail to consider correlations hidden in sequential computed tomography (CT) images. This paper proposed a novel three-dimensional (tensor-based) ring artifacts removal algorithm for synchrotron radiation X-ray PC-μCT images. In the sinogram domain, ring artifacts manifest as vertical stripe artifacts. From an image decomposition perspective, a degraded sinogram can be decomposed into a stripe artifacts component and an underlying clean sinogram component. The proposed algorithm is designed to detect and remove stripe artifacts from a degraded sinogram by fully identifying the characteristics of the two components. Specifically, for the stripe artifacts component, tensor Tucker decomposition is used to describe its low-rank character. For the underlying clean sinogram component, spatial-sequential total variation regularization is adopted to enhance the piecewise smoothness. Moreover, the Frobenius norm term is further used to model Gaussian noise. An efficient augmented Lagrange multiplier method is designed to solve the proposed optimization model.

RESULTS

The proposed method is evaluated utilizing both simulations and real data containing different ring artifacts patterns. In the simulations, the human chest CT images are used for evaluating the proposed method. We compare the peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and mean absolute error (MAE) results of our algorithm with the Naghia's method, the RRRTV method, the wavelet-FFT method, and the SDRSD-GIF method. The proposed method was also evaluated on real data from rat liver samples and rat tooth samples. Our proposed method outperforms the competing methods in terms of both qualitative and quantitative evaluation results. Additionally, the 3D visualization results were presented to make the ring artifacts removal effect more intuitive.

CONCLUSION

The experimental results on simulations and real data clearly demonstrated that the proposed algorithm can significantly improve the quality of PC-μCT images compared with the existing popular algorithms, and it has great potential to promote the application of high-resolution imaging for visualizing biological tissues.

摘要

目的

高分辨率同步辐射 X 射线相衬微断层扫描(PC-μCT)图像常常受到严重的环状伪影的影响,这些伪影主要是由探测器元件的不理想响应引起的。在医学成像领域,环状伪影的存在会导致视觉质量下降,并直接影响诊断准确性。因此,去除或至少有效减少环状伪影是必不可少的。

方法

现有的环状伪影去除算法主要集中在二维(基于矩阵)先验上,这些算法未能考虑到同步辐射 X 射线 PC-μCT 图像中隐藏的序列相关性。本文提出了一种新的用于同步辐射 X 射线相衬微断层扫描图像的三维(基于张量)环状伪影去除算法。在射线图域中,环状伪影表现为垂直条纹伪影。从图像分解的角度来看,一个退化的射线图可以分解为条纹伪影分量和基础干净射线图分量。所提出的算法旨在通过充分识别两个分量的特征来检测和去除退化射线图中的条纹伪影。具体来说,对于条纹伪影分量,采用张量 Tucker 分解来描述其低秩特征。对于基础干净射线图分量,采用空间序列全变分正则化来增强分段平滑性。此外,还进一步使用 Frobenius 范数项来模拟高斯噪声。设计了一种有效的增广拉格朗日乘子法来求解所提出的优化模型。

结果

利用模拟数据和包含不同环状伪影模式的真实数据对所提出的方法进行了评估。在模拟中,使用人体胸部 CT 图像来评估所提出的方法。我们将所提出的方法的峰值信噪比(PSNR)、结构相似性(SSIM)和平均绝对误差(MAE)结果与 Naghia 的方法、RRRTV 方法、小波-FFT 方法和 SDRSD-GIF 方法进行了比较。在所提出的方法还在大鼠肝样本和大鼠牙样本的真实数据上进行了评估。在所提出的方法在定性和定量评估结果方面均优于竞争方法。此外,还呈现了 3D 可视化结果,以使环状伪影去除效果更加直观。

结论

模拟数据和真实数据的实验结果清楚地表明,与现有的流行算法相比,所提出的算法可以显著提高 PC-μCT 图像的质量,并且它在促进高分辨率成像在生物组织可视化中的应用方面具有很大的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验