IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):2660-2670. doi: 10.1109/TNSRE.2020.3040264. Epub 2021 Jan 28.
Recently, practical brain-computer interfaces (BCIs) have been widely investigated for detecting human intentions in real world. However, performance differences still exist between the laboratory and the real world environments. One of the main reasons for such differences comes from the user's unstable physical states (e.g., human movements are not strictly controlled), which produce unexpected signal artifacts. Hence, to minimize the performance degradation of electroencephalography (EEG)-based BCIs, we present a novel artifact removal method named constrained independent component analysis with online learning (cIOL). The cIOL can find and reject the noise-like components related to human body movements (i.e., movement artifacts) in the EEG signals. To obtain movement information, isolated electrodes are used to block electrical signals from the brain using high-resistance materials. We estimate artifacts with movement information using constrained independent component analysis from EEG signals and then extract artifact-free signals using online learning in each sample. In addition, the cIOL is evaluated by signal processing under 16 different experimental conditions (two types of EEG devices × two BCI paradigms × four different walking speeds). The experimental results show that the cIOL has the highest accuracy in both scalp- and ear-EEG, and has the highest signal-to-noise ratio in scalp-EEG among the state-of-the-art methods, except for the case of steady-state visual evoked potential at 2.0 m/s with superposition problem.
最近,实用型脑机接口(BCI)在检测人类真实世界意图方面得到了广泛研究。然而,实验室和真实世界环境之间的性能差异仍然存在。造成这种差异的一个主要原因来自于用户不稳定的身体状态(例如,人的运动无法严格控制),这会产生意想不到的信号伪影。因此,为了最大限度地减少基于脑电图(EEG)的 BCI 的性能下降,我们提出了一种名为带在线学习的约束独立成分分析(cIOL)的新型去伪影方法。cIOL 可以在 EEG 信号中找到并拒绝与人体运动相关的类似噪声的成分(即运动伪影)。为了获取运动信息,使用隔离电极用高阻材料阻断来自大脑的电信号。我们使用约束独立成分分析从 EEG 信号中用运动信息估计伪影,然后在每个样本中使用在线学习提取无伪影信号。此外,cIOL 在 16 种不同的实验条件下(两种 EEG 设备 × 两种 BCI 范式 × 四种不同的步行速度)进行了信号处理评估。实验结果表明,cIOL 在头皮和耳 EEG 中的准确率最高,在头皮 EEG 中的信噪比高于除了 2.0m/s 稳态视觉诱发电位叠加问题情况下的所有最新方法。