Suppr超能文献

从头皮脑电图中检测和去除伪迹的方法:综述。

Methods for artifact detection and removal from scalp EEG: A review.

作者信息

Islam Md Kafiul, Rastegarnia Amir, Yang Zhi

机构信息

Department of Electrical and Computer Engineering, National University of Singapore, Singapore.

Department of Electrical Engineering, University of Malayer, Malayer, Iran.

出版信息

Neurophysiol Clin. 2016 Nov;46(4-5):287-305. doi: 10.1016/j.neucli.2016.07.002. Epub 2016 Oct 15.

Abstract

Electroencephalography (EEG) is the most popular brain activity recording technique used in wide range of applications. One of the commonly faced problems in EEG recordings is the presence of artifacts that come from sources other than brain and contaminate the acquired signals significantly. Therefore, much research over the past 15 years has focused on identifying ways for handling such artifacts in the preprocessing stage. However, this is still an active area of research as no single existing artifact detection/removal method is complete or universal. This article presents an extensive review of the existing state-of-the-art artifact detection and removal methods from scalp EEG for all potential EEG-based applications and analyses the pros and cons of each method. First, a general overview of the different artifact types that are found in scalp EEG and their effect on particular applications are presented. In addition, the methods are compared based on their ability to remove certain types of artifacts and their suitability in relevant applications (only functional comparison is provided not performance evaluation of methods). Finally, the future direction and expected challenges of current research is discussed. Therefore, this review is expected to be helpful for interested researchers who will develop and/or apply artifact handling algorithm/technique in future for their applications as well as for those willing to improve the existing algorithms or propose a new solution in this particular area of research.

摘要

脑电图(EEG)是应用广泛的最流行的脑活动记录技术。EEG记录中常见的问题之一是存在源自大脑以外的源的伪迹,这些伪迹会严重污染采集到的信号。因此,在过去15年中,许多研究都集中在确定在预处理阶段处理此类伪迹的方法上。然而,这仍然是一个活跃的研究领域,因为现有的单一伪迹检测/去除方法都不完整或通用。本文对用于所有基于EEG的潜在应用的头皮EEG中现有的最先进的伪迹检测和去除方法进行了广泛综述,并分析了每种方法的优缺点。首先,介绍了头皮EEG中发现的不同伪迹类型及其对特定应用的影响的总体概述。此外,根据方法去除特定类型伪迹的能力及其在相关应用中的适用性对方法进行比较(仅提供功能比较,不进行方法的性能评估)。最后,讨论了当前研究的未来方向和预期挑战。因此,预计这篇综述将有助于未来开发和/或应用伪迹处理算法/技术的感兴趣的研究人员,以及那些愿意改进现有算法或在这一特定研究领域提出新解决方案的人员。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验