Suppr超能文献

利用大兴安岭地区 MODIS 图像估算空气负离子浓度的反演模型。

An inversion model for estimating the negative air ion concentration using MODIS images of the Daxing'anling region.

机构信息

Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China.

出版信息

PLoS One. 2020 Nov 24;15(11):e0242554. doi: 10.1371/journal.pone.0242554. eCollection 2020.

Abstract

The negative air ion (NAI) concentration is an essential indicator of air quality and atmospheric pollution. The NAI concentration can be used to monitor air quality on a regional scale and is commonly determined using field measurements. However, obtaining these measurements is time-consuming. In this paper, the relationship between remotely sensed surface parameters (such as land surface temperature, normalized difference vegetation index (NDVI), and leaf area index) obtained from MODIS data products and the measured NAI concentration using a stepwise regression method was analyzed to estimate the spatial distribution of the NAI concentration and verify the precision. The results indicated that the NAI concentration had a negative correlation with temperature, leaf area index (LAI), and gross primary production while it exhibited a positive correlation with the NDVI. The relationship between land surface temperature and the NAI concentration in the Daxing'anling region is expressed by the regression equation of y = -35.51x1 + 11206.813 (R2 = 0.6123). Additionally, the NAI concentration in northwest regions with high forest coverage was higher than that in southeast regions with low forest coverage, suggesting that forests influence the air quality and reduce the impact of environmental pollution. The proposed inversion model is suitable for evaluating the air quality in Daxing'anling and provides a reference for air quality evaluation in other areas. In the future, we will expand the quantity and distribution range of sampling points, conduct continuous observations of NAI concentrations and environmental parameters in the research areas with different land-use types, and further improve the accuracy of inversion results to analyze the spatiotemporal dynamic changes in NAI concentration and explore the possibility of expanding the application areas of NAI monitoring.

摘要

空气负离子(NAI)浓度是空气质量和大气污染的重要指标。NAI 浓度可用于监测区域尺度的空气质量,通常通过现场测量来确定。然而,获取这些测量值是耗时的。本文通过逐步回归方法分析了从 MODIS 数据产品中获得的遥感地表参数(如地表温度、归一化差异植被指数(NDVI)和叶面积指数)与实测 NAI 浓度之间的关系,以估算 NAI 浓度的空间分布并验证精度。结果表明,NAI 浓度与温度、叶面积指数(LAI)和总初级生产力呈负相关,与 NDVI 呈正相关。大兴安岭地区地表温度与 NAI 浓度的关系由回归方程 y = -35.51x1 + 11206.813(R2 = 0.6123)表示。此外,高森林覆盖率的西北部地区的 NAI 浓度高于低森林覆盖率的东南部地区,表明森林影响空气质量并减轻环境污染的影响。所提出的反演模型适用于评估大兴安岭的空气质量,并为其他地区的空气质量评价提供参考。未来,我们将扩大采样点的数量和分布范围,对不同土地利用类型研究区域的 NAI 浓度和环境参数进行连续观测,并进一步提高反演结果的精度,以分析 NAI 浓度的时空动态变化,探索扩展 NAI 监测应用领域的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fdb/7685430/f84a4a85b6b9/pone.0242554.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验