Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
Dev Cell. 2020 Dec 7;55(5):603-616.e5. doi: 10.1016/j.devcel.2020.10.019. Epub 2020 Nov 23.
Axillary meristems (AMs) give rise to lateral shoots and are critical to plant architecture. Understanding how developmental cues and environmental signals impact AM development will enable the improvement of plant architecture in agriculture. Here, we show that ARGONAUTE10 (AGO10), which sequesters miR165/166, promotes AM development through the miR165/166 target gene REVOLUTA. We reveal that AGO10 expression is precisely controlled temporally and spatially by auxin, brassinosteroids, and light to result in AM initiation only in the axils of leaves at a certain age. AUXIN RESPONSE FACTOR 5 (ARF5) activates while BRASSINAZOLE-RESISTANT 1 (BZR1) and PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) repress AGO10 transcription directly. In axils of young leaves, BZR1 and PIF4 repress AGO10 expression to prevent AM initiation. In axils of older leaves, ARF5 upregulates AGO10 expression to promote AM initiation. Our results uncover the spatiotemporal control of AM development through the cooperation of hormones and light converging on a regulator of microRNA.
腋芽分生组织(AMs)产生侧芽,对植物的结构至关重要。了解发育线索和环境信号如何影响 AM 的发育,将能够改进农业中的植物结构。在这里,我们表明,ARGONAUTE10(AGO10)通过 miR165/166 的靶基因 REVOLUTA 促进 AM 的发育,AGO10 可隔离 miR165/166。我们揭示了 AGO10 的表达受生长素、油菜素内酯和光的时空精确调控,仅在特定年龄的叶片腋芽中引发 AM 的起始。生长素反应因子 5(ARF5)激活,而 BRASSINAZOLE-RESISTANT 1(BZR1)和 PHYTOCHROME-INTERACTING FACTOR 4(PIF4)直接抑制 AGO10 的转录。在幼叶的腋芽中,BZR1 和 PIF4 抑制 AGO10 的表达以防止 AM 的起始。在老叶的腋芽中,ARF5 上调 AGO10 的表达以促进 AM 的起始。我们的结果揭示了激素和光通过共同作用来调控 AM 发育的时空控制,而这一作用是通过 microRNA 的调节剂来实现的。