Suppr超能文献

从入侵时间估计人群之间的流行耦合。

Estimating epidemic coupling between populations from the time to invasion.

作者信息

Hempel Karsten, Earn David J D

机构信息

Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1.

出版信息

J R Soc Interface. 2020 Nov;17(172):20200523. doi: 10.1098/rsif.2020.0523. Epub 2020 Nov 25.

Abstract

Identifying the mechanisms by which diseases spread among populations is important for understanding and forecasting patterns of epidemics and pandemics. Estimating transmission coupling among populations is challenging because transmission events are difficult to observe in practice, and connectivity among populations is often obscured by local disease dynamics. We consider the common situation in which an epidemic is seeded in one population and later spreads to a second population. We present a method for estimating transmission coupling between the two populations, assuming they can be modelled as (SIR) systems. We show that the strength of coupling between the two populations can be estimated from the time taken for the disease to invade the second population. Confidence in the estimate is low if only a single invasion event has been observed, but is substantially improved if numerous independent invasion events are observed. Our analysis of this simplest, idealized scenario represents a first step toward developing and verifying methods for estimating epidemic coupling among populations in an ever-more-connected global human population.

摘要

识别疾病在人群中传播的机制对于理解和预测流行病及大流行病的模式至关重要。估计人群之间的传播耦合具有挑战性,因为传播事件在实际中难以观察到,而且人群之间的连通性常常被局部疾病动态所掩盖。我们考虑一种常见情况,即一种流行病在一个人群中爆发,随后传播到第二个人群。我们提出一种估计这两个人群之间传播耦合的方法,假设它们可以被建模为(易感 - 感染 - 康复,SIR)系统。我们表明,两个人群之间的耦合强度可以从疾病侵入第二个人群所需的时间来估计。如果只观察到一次侵入事件,对估计的置信度较低,但如果观察到大量独立的侵入事件,置信度会显著提高。我们对这种最简单、理想化情景的分析代表了朝着开发和验证在日益相互连接的全球人类群体中估计人群间流行病耦合方法迈出的第一步。

相似文献

1
Estimating epidemic coupling between populations from the time to invasion.从入侵时间估计人群之间的流行耦合。
J R Soc Interface. 2020 Nov;17(172):20200523. doi: 10.1098/rsif.2020.0523. Epub 2020 Nov 25.
7
Uncertainty quantification in epidemiological models for the COVID-19 pandemic.新冠疫情流行病学模型中的不确定性量化。
Comput Biol Med. 2020 Oct;125:104011. doi: 10.1016/j.compbiomed.2020.104011. Epub 2020 Sep 25.
8
Effects of local and global network connectivity on synergistic epidemics.局部和全局网络连通性对协同流行的影响。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):062814. doi: 10.1103/PhysRevE.92.062814. Epub 2015 Dec 11.
10

本文引用的文献

1
Acceleration of plague outbreaks in the second pandemic.第二次大流行中鼠疫的爆发加速。
Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27703-27711. doi: 10.1073/pnas.2004904117. Epub 2020 Oct 19.
3
Estimating initial epidemic growth rates.估计初始疫情增长率。
Bull Math Biol. 2014 Jan;76(1):245-60. doi: 10.1007/s11538-013-9918-2. Epub 2013 Nov 23.
5
8
Epidemiological effects of seasonal oscillations in birth rates.出生率季节性波动的流行病学影响。
Theor Popul Biol. 2007 Sep;72(2):274-91. doi: 10.1016/j.tpb.2007.04.004. Epub 2007 May 7.
10
Inference for nonlinear dynamical systems.非线性动力系统的推断
Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18438-43. doi: 10.1073/pnas.0603181103. Epub 2006 Nov 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验