Suppr超能文献

从入侵时间估计人群之间的流行耦合。

Estimating epidemic coupling between populations from the time to invasion.

作者信息

Hempel Karsten, Earn David J D

机构信息

Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1.

出版信息

J R Soc Interface. 2020 Nov;17(172):20200523. doi: 10.1098/rsif.2020.0523. Epub 2020 Nov 25.

Abstract

Identifying the mechanisms by which diseases spread among populations is important for understanding and forecasting patterns of epidemics and pandemics. Estimating transmission coupling among populations is challenging because transmission events are difficult to observe in practice, and connectivity among populations is often obscured by local disease dynamics. We consider the common situation in which an epidemic is seeded in one population and later spreads to a second population. We present a method for estimating transmission coupling between the two populations, assuming they can be modelled as (SIR) systems. We show that the strength of coupling between the two populations can be estimated from the time taken for the disease to invade the second population. Confidence in the estimate is low if only a single invasion event has been observed, but is substantially improved if numerous independent invasion events are observed. Our analysis of this simplest, idealized scenario represents a first step toward developing and verifying methods for estimating epidemic coupling among populations in an ever-more-connected global human population.

摘要

识别疾病在人群中传播的机制对于理解和预测流行病及大流行病的模式至关重要。估计人群之间的传播耦合具有挑战性,因为传播事件在实际中难以观察到,而且人群之间的连通性常常被局部疾病动态所掩盖。我们考虑一种常见情况,即一种流行病在一个人群中爆发,随后传播到第二个人群。我们提出一种估计这两个人群之间传播耦合的方法,假设它们可以被建模为(易感 - 感染 - 康复,SIR)系统。我们表明,两个人群之间的耦合强度可以从疾病侵入第二个人群所需的时间来估计。如果只观察到一次侵入事件,对估计的置信度较低,但如果观察到大量独立的侵入事件,置信度会显著提高。我们对这种最简单、理想化情景的分析代表了朝着开发和验证在日益相互连接的全球人类群体中估计人群间流行病耦合方法迈出的第一步。

相似文献

1
Estimating epidemic coupling between populations from the time to invasion.
J R Soc Interface. 2020 Nov;17(172):20200523. doi: 10.1098/rsif.2020.0523. Epub 2020 Nov 25.
3
Correlations between stochastic epidemics in two interacting populations.
Epidemics. 2019 Mar;26:58-67. doi: 10.1016/j.epidem.2018.08.005. Epub 2018 Aug 30.
4
Discrete-time moment closure models for epidemic spreading in populations of interacting individuals.
J Theor Biol. 2016 Jun 21;399:13-21. doi: 10.1016/j.jtbi.2016.03.024. Epub 2016 Mar 30.
6
Predictability in a highly stochastic system: final size of measles epidemics in small populations.
J R Soc Interface. 2015 Jan 6;12(102):20141125. doi: 10.1098/rsif.2014.1125.
7
Uncertainty quantification in epidemiological models for the COVID-19 pandemic.
Comput Biol Med. 2020 Oct;125:104011. doi: 10.1016/j.compbiomed.2020.104011. Epub 2020 Sep 25.
8
Effects of local and global network connectivity on synergistic epidemics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):062814. doi: 10.1103/PhysRevE.92.062814. Epub 2015 Dec 11.
9
A general model for stochastic SIR epidemics with two levels of mixing.
Math Biosci. 2002 Nov-Dec;180:73-102. doi: 10.1016/s0025-5564(02)00125-6.
10
Stochastic SIR epidemics in a population with households and schools.
J Math Biol. 2016 Apr;72(5):1177-93. doi: 10.1007/s00285-015-0901-4. Epub 2015 Jun 13.

本文引用的文献

1
Acceleration of plague outbreaks in the second pandemic.
Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27703-27711. doi: 10.1073/pnas.2004904117. Epub 2020 Oct 19.
2
The distribution of the time taken for an epidemic to spread between two communities.
Math Biosci. 2018 Sep;303:139-147. doi: 10.1016/j.mbs.2018.07.004. Epub 2018 Jul 7.
3
Estimating initial epidemic growth rates.
Bull Math Biol. 2014 Jan;76(1):245-60. doi: 10.1007/s11538-013-9918-2. Epub 2013 Nov 23.
4
Effects of the infectious period distribution on predicted transitions in childhood disease dynamics.
J R Soc Interface. 2013 May 15;10(84):20130098. doi: 10.1098/rsif.2013.0098. Print 2013 Jul 6.
5
Statistical inference for stochastic simulation models--theory and application.
Ecol Lett. 2011 Aug;14(8):816-27. doi: 10.1111/j.1461-0248.2011.01640.x. Epub 2011 Jun 17.
6
Resolving the impact of waiting time distributions on the persistence of measles.
J R Soc Interface. 2010 Apr 6;7(45):623-40. doi: 10.1098/rsif.2009.0284. Epub 2009 Sep 30.
7
Social contacts and mixing patterns relevant to the spread of infectious diseases.
PLoS Med. 2008 Mar 25;5(3):e74. doi: 10.1371/journal.pmed.0050074.
8
Epidemiological effects of seasonal oscillations in birth rates.
Theor Popul Biol. 2007 Sep;72(2):274-91. doi: 10.1016/j.tpb.2007.04.004. Epub 2007 May 7.
9
Infectiousness of smallpox relative to disease age: estimates based on transmission network and incubation period.
Epidemiol Infect. 2007 Oct;135(7):1145-50. doi: 10.1017/S0950268806007618. Epub 2006 Dec 7.
10
Inference for nonlinear dynamical systems.
Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18438-43. doi: 10.1073/pnas.0603181103. Epub 2006 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验