Hoen Anne G, Hladish Thomas J, Eggo Rosalind M, Lenczner Michael, Brownstein John S, Meyers Lauren Ancel
Computational Epidemiology Group, Children's Hospital Informatics Program, Boston Children's Hospital, Boston, MA, United States.
J Med Internet Res. 2015 Jul 8;17(7):e169. doi: 10.2196/jmir.3720.
Multiple waves of transmission during infectious disease epidemics represent a major public health challenge, but the ecological and behavioral drivers of epidemic resurgence are poorly understood. In theory, community structure—aggregation into highly intraconnected and loosely interconnected social groups—within human populations may lead to punctuated outbreaks as diseases progress from one community to the next. However, this explanation has been largely overlooked in favor of temporal shifts in environmental conditions and human behavior and because of the difficulties associated with estimating large-scale contact patterns.
The aim was to characterize naturally arising patterns of human contact that are capable of producing simulated epidemics with multiple wave structures.
We used an extensive dataset of proximal physical contacts between users of a public Wi-Fi Internet system to evaluate the epidemiological implications of an empirical urban contact network. We characterized the modularity (community structure) of the network and then estimated epidemic dynamics under a percolation-based model of infectious disease spread on the network. We classified simulated epidemics as multiwave using a novel metric and we identified network structures that were critical to the network's ability to produce multiwave epidemics.
We identified robust community structure in a large, empirical urban contact network from which multiwave epidemics may emerge naturally. This pattern was fueled by a special kind of insularity in which locally popular individuals were not the ones forging contacts with more distant social groups.
Our results suggest that ordinary contact patterns can produce multiwave epidemics at the scale of a single urban area without the temporal shifts that are usually assumed to be responsible. Understanding the role of community structure in epidemic dynamics allows officials to anticipate epidemic resurgence without having to forecast future changes in hosts, pathogens, or the environment.
传染病流行期间的多轮传播是一项重大的公共卫生挑战,但对于疫情卷土重来的生态和行为驱动因素,我们了解得还很少。理论上,人群中的社区结构——聚集成高度内部连接和松散连接的社会群体——可能导致疾病从一个社区传播到下一个社区时出现间歇性爆发。然而,这种解释在很大程度上被忽视了,人们更倾向于关注环境条件和人类行为的时间变化,也因为估计大规模接触模式存在困难。
旨在描述自然产生的人类接触模式,这些模式能够产生具有多波结构的模拟疫情。
我们使用了一个关于公共Wi-Fi互联网系统用户之间近距离身体接触的广泛数据集,来评估一个实证城市接触网络的流行病学意义。我们描述了该网络的模块化(社区结构),然后在基于渗流的传染病在网络上传播的模型下估计疫情动态。我们使用一种新的指标将模拟疫情分类为多波疫情,并确定了对网络产生多波疫情能力至关重要的网络结构。
我们在一个大型的实证城市接触网络中发现了强大的社区结构,多波疫情可能自然地从中出现。这种模式是由一种特殊的孤立性推动的,即当地受欢迎的人并不是与更遥远社会群体建立联系的人。
我们的结果表明,普通的接触模式可以在单个城市区域的规模上产生多波疫情,而无需通常认为的时间变化。了解社区结构在疫情动态中的作用,使官员能够预测疫情的卷土重来,而无需预测宿主、病原体或环境的未来变化。