Suppr超能文献

碳化硅纳米机电开关中的电动力、卡西米尔效应和静摩擦力缓解

Electrodynamic Force, Casimir Effect, and Stiction Mitigation in Silicon Carbide Nanoelectromechanical Switches.

作者信息

Yang Rui, Qian Jiang, Feng Philip X-L

机构信息

Department of Electrical Engineering and Computer Science, Case School of Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.

University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, China.

出版信息

Small. 2020 Dec;16(51):e2005594. doi: 10.1002/smll.202005594. Epub 2020 Nov 25.

Abstract

Logic switches enabled by nanoelectromechanical systems (NEMS) offer abrupt on/off-state transition with zero off-state leakage and minimal subthreshold swing, making them uniquely suited for enhancing mainstream electronics in a range of applications, such as power gating, high-temperature and high-voltage logic, and ultralow-power circuits requiring zero standby leakage. As NEMS switches are scaled with genuinely nanoscale gaps and contacts, quantum mechanical electrodynamic force (EDF) takes an important role and may be the ultimate cause of the plaguing problem of stiction. Here, combined with experiments on three-terminal silicon carbide (SiC) NEMS switches, a theoretical investigation is performed to elucidate the origin of EDF and Casimir effect leading to stiction, and to develop a stiction-mitigation design. The EDF calculation with full Lifshitz formula using the actual material and device parameters is provided. Finite element modeling and analytical calculations demonstrate that EDF becomes dominant over elastic restoring force in such SiC NEMS when the switching gap shrinks to a few nanometers, leading to irreversible stiction at contact. Artificially corrugated contact surfaces are designed to reduce the contact area and the EDF, thus evading stiction. This rational surface engineering reduces the EDF down to 4% compared with the case of unengineered, flat contact surfaces.

摘要

由纳米机电系统(NEMS)实现的逻辑开关具有突然的开/关状态转换,关态泄漏为零且亚阈值摆幅最小,这使其特别适合在一系列应用中增强主流电子产品,如电源门控、高温和高压逻辑以及要求零待机泄漏的超低功耗电路。由于NEMS开关按真正的纳米级间隙和触点进行缩放,量子力学电动力(EDF)起着重要作用,并且可能是困扰粘着问题的最终原因。在此,结合对三端碳化硅(SiC)NEMS开关的实验,进行了一项理论研究,以阐明导致粘着的EDF和卡西米尔效应的起源,并开发一种减轻粘着的设计。提供了使用实际材料和器件参数的完整 Lifshitz 公式进行的EDF计算。有限元建模和分析计算表明,当开关间隙缩小到几纳米时,在这种SiC NEMS中EDF超过弹性恢复力,导致接触时出现不可逆的粘着。设计人工波纹状接触表面以减少接触面积和EDF,从而避免粘着。与未加工的平坦接触表面相比,这种合理的表面工程将EDF降低到4%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验