Suppr超能文献

用于高效声转导的相互增强聚合物-石墨烯双层膜

Mutually Reinforced Polymer-Graphene Bilayer Membranes for Energy-Efficient Acoustic Transduction.

作者信息

Khan Assad U, Zeltzer Gabriel, Speyer Gavriel, Croft Zacary L, Guo Yichen, Nagar Yehiel, Artel Vlada, Levi Adi, Stern Chen, Naveh Doron, Liu Guoliang

机构信息

Department of Chemistry, Macromolecules Innovation Institute, and Division of Nanoscience, Academy of Integrated Science, Virginia Tech, Blacksburg, VA, 24061, USA.

Waves Audio Ltd., Tel-Aviv, 6701101, Israel.

出版信息

Adv Mater. 2021 Jan;33(2):e2004053. doi: 10.1002/adma.202004053. Epub 2020 Nov 25.

Abstract

Graphene holds promise for thin, ultralightweight, and high-performance nanoelectromechanical transducers. However, graphene-only devices are limited in size due to fatigue and fracture of suspended graphene membranes. Here, a lightweight, flexible, transparent, and conductive bilayer composite of polyetherimide and single-layer graphene is prepared and suspended on the centimeter scale with an unprecedentedly high aspect ratio of 10 . The coupling of the two components leads to mutual reinforcement and creates an ultrastrong membrane that supports 30 000 times its own weight. Upon electromechanical actuation, the membrane pushes a massive amount of air and generates high-quality acoustic sound. The energy efficiency is ≈10-100 times better than state-of-the-art electrodynamic speakers. The bilayer membrane's combined properties of electrical conductivity, mechanical strength, optical transparency, thermal stability, and chemical resistance will promote applications in electronics, mechanics, and optics.

摘要

石墨烯有望用于制造轻薄、超轻型且高性能的纳米机电换能器。然而,仅由石墨烯构成的器件由于悬浮石墨烯膜的疲劳和断裂,在尺寸上受到限制。在此,制备了一种由聚醚酰亚胺和单层石墨烯组成的轻质、柔性、透明且导电的双层复合材料,并将其以高达10的前所未有的高纵横比悬浮在厘米尺度上。两种组分的耦合导致相互增强,并形成了一种能支撑自身重量30000倍的超强薄膜。在机电驱动时,该薄膜推动大量空气并产生高质量的声学声音。其能量效率比最先进的电动扬声器高约10至100倍。双层膜兼具的导电性、机械强度、光学透明度、热稳定性和耐化学性等综合性能将推动其在电子、机械和光学领域的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验