Suppr超能文献

对氧化还原聚合物向光活性蛋白的电子转移的洞察。

Insight into Electron Transfer from a Redox Polymer to a Photoactive Protein.

作者信息

Białek Rafał, Thakur Kalyani, Ruff Adrian, Jones Michael R, Schuhmann Wolfgang, Ramanan Charusheela, Gibasiewicz Krzysztof

机构信息

Faculty of Physics, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.

Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.

出版信息

J Phys Chem B. 2020 Dec 10;124(49):11123-11132. doi: 10.1021/acs.jpcb.0c08714. Epub 2020 Nov 25.

Abstract

Biohybrid photoelectrochemical systems in photovoltaic or biosensor applications have gained considerable attention in recent years. While the photoactive proteins engaged in such systems usually maintain an internal charge separation quantum yield of nearly 100%, the subsequent steps of electron and hole transfer beyond the protein often limit the overall system efficiency and their kinetics remain largely uncharacterized. To reveal the dynamics of one of such charge-transfer reactions, we report on the reduction of reaction centers (RCs) by Os-complex-modified redox polymers (P-Os) characterized using transient absorption spectroscopy. RCs and P-Os were mixed in buffered solution in different molar ratios in the presence of a water-soluble quinone as an electron acceptor. Electron transfer from P-Os to the photoexcited RCs could be described by a three-exponential function, the fastest lifetime of which was on the order of a few microseconds, which is a few orders of magnitude faster than the internal charge recombination of RCs with fully separated charge. This was similar to the lifetime for the reduction of RCs by their natural electron donor, cytochrome . The rate of electron donation increased with increasing ratio of polymer to protein concentrations. It is proposed that P-Os and RCs engage in electrostatic interactions to form complexes, the sizes of which depend on the polymer-to-protein ratio. Our findings throw light on the processes within hydrogel-based biophotovoltaic devices and will inform the future design of materials optimally suited for this application.

摘要

近年来,用于光伏或生物传感器应用的生物杂交光电化学系统受到了广泛关注。虽然参与此类系统的光活性蛋白通常保持近100%的内部电荷分离量子产率,但在蛋白之外的电子和空穴转移的后续步骤往往限制了整个系统的效率,并且它们的动力学在很大程度上仍未得到表征。为了揭示此类电荷转移反应之一的动力学,我们报道了用瞬态吸收光谱表征的Os-配合物修饰的氧化还原聚合物(P-Os)对反应中心(RCs)的还原作用。在水溶性醌作为电子受体的存在下,将RCs和P-Os以不同的摩尔比混合在缓冲溶液中。从P-Os到光激发的RCs的电子转移可以用一个三指数函数来描述,其最快的寿命约为几微秒,这比具有完全分离电荷的RCs的内部电荷复合快几个数量级。这与RCs被其天然电子供体细胞色素还原的寿命相似。电子供体的速率随着聚合物与蛋白质浓度比的增加而增加。有人提出,P-Os和RCs通过静电相互作用形成复合物,其大小取决于聚合物与蛋白质的比例。我们的研究结果揭示了基于水凝胶的生物光伏器件中的过程,并将为未来最适合此应用的材料设计提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db60/7735723/9b4e2d2376b9/jp0c08714_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验