Suppr超能文献

Wnt3 在斑马鱼脑中的分布由表达、扩散和多种分子相互作用决定。

Wnt3 distribution in the zebrafish brain is determined by expression, diffusion and multiple molecular interactions.

机构信息

Department of Biological Sciences, National University of Singapore, Singapore, Singapore.

Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore.

出版信息

Elife. 2020 Nov 25;9:e59489. doi: 10.7554/eLife.59489.

Abstract

Wnt3 proteins are lipidated and glycosylated signaling molecules that play an important role in zebrafish neural patterning and brain development. However, the transport mechanism of lipid-modified Wnts through the hydrophilic extracellular environment for long-range action remains unresolved. Here we determine how Wnt3 accomplishes long-range distribution in the zebrafish brain. First, we characterize the Wnt3-producing source and Wnt3-receiving target regions. Subsequently, we analyze Wnt3 mobility at different length scales by fluorescence correlation spectroscopy and fluorescence recovery after photobleaching. We demonstrate that Wnt3 spreads extracellularly and interacts with heparan sulfate proteoglycans (HSPG). We then determine the binding affinity of Wnt3 to its receptor, Frizzled1 (Fzd1), using fluorescence cross-correlation spectroscopy and show that the co-receptor, low-density lipoprotein receptor-related protein 5 (Lrp5), is required for Wnt3-Fzd1 interaction. Our results are consistent with the extracellular distribution of Wnt3 by a diffusive mechanism that is modified by tissue morphology, interactions with HSPG, and Lrp5-mediated receptor binding, to regulate zebrafish brain development.

摘要

Wnt3 蛋白是脂质化和糖基化的信号分子,在斑马鱼神经模式形成和大脑发育中发挥重要作用。然而,脂质修饰的 Wnt 通过亲水细胞外环境进行长程作用的运输机制仍未解决。在这里,我们确定了 Wnt3 如何在斑马鱼大脑中实现长程分布。首先,我们描述了 Wnt3 的产生源和 Wnt3 的接收靶区。随后,我们通过荧光相关光谱和光漂白后荧光恢复分析来分析不同长度尺度上的 Wnt3 迁移率。我们证明 Wnt3 在细胞外扩散并与硫酸乙酰肝素蛋白聚糖(HSPG)相互作用。然后,我们使用荧光互相关光谱测定 Wnt3 与其受体 Frizzled1(Fzd1)的结合亲和力,并表明共受体低密度脂蛋白受体相关蛋白 5(Lrp5)是 Wnt3-Fzd1 相互作用所必需的。我们的结果与 Wnt3 通过扩散机制在细胞外分布的情况一致,这种扩散机制受组织形态、与 HSPG 的相互作用以及 Lrp5 介导的受体结合的影响,从而调节斑马鱼大脑发育。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7789/7725503/f15d4de95d85/elife-59489-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验