Nature. 2020 Nov;587(7835):577-582. doi: 10.1038/s41586-020-2934-0. Epub 2020 Nov 25.
For most of their existence, stars are fuelled by the fusion of hydrogen into helium. Fusion proceeds via two processes that are well understood theoretically: the proton-proton (pp) chain and the carbon-nitrogen-oxygen (CNO) cycle. Neutrinos that are emitted along such fusion processes in the solar core are the only direct probe of the deep interior of the Sun. A complete spectroscopic study of neutrinos from the pp chain, which produces about 99 per cent of the solar energy, has been performed previously; however, there has been no reported experimental evidence of the CNO cycle. Here we report the direct observation, with a high statistical significance, of neutrinos produced in the CNO cycle in the Sun. This experimental evidence was obtained using the highly radiopure, large-volume, liquid-scintillator detector of Borexino, an experiment located at the underground Laboratori Nazionali del Gran Sasso in Italy. The main experimental challenge was to identify the excess signal-only a few counts per day above the background per 100 tonnes of target-that is attributed to interactions of the CNO neutrinos. Advances in the thermal stabilization of the detector over the last five years enabled us to develop a method to constrain the rate of bismuth-210 contaminating the scintillator. In the CNO cycle, the fusion of hydrogen is catalysed by carbon, nitrogen and oxygen, and so its rate-as well as the flux of emitted CNO neutrinos-depends directly on the abundance of these elements in the solar core. This result therefore paves the way towards a direct measurement of the solar metallicity using CNO neutrinos. Our findings quantify the relative contribution of CNO fusion in the Sun to be of the order of 1 per cent; however, in massive stars, this is the dominant process of energy production. This work provides experimental evidence of the primary mechanism for the stellar conversion of hydrogen into helium in the Universe.
对于大多数恒星而言,其存在的大部分时间都依赖于氢向氦的核聚变。核聚变通过两个在理论上得到很好理解的过程进行:质子-质子(pp)链和碳氮氧(CNO)循环。沿此类核聚变过程在太阳核心中发射的中微子是对太阳内部深处的唯一直接探测。先前已经对产生约 99%太阳能量的 pp 链中微子进行了全面的光谱研究;然而,目前还没有关于 CNO 循环的实验证据。在这里,我们报告了在太阳中 CNO 循环中产生的中微子的直接观测结果,其具有很高的统计显著性。这项实验证据是使用 Borexino 的高度放射性纯、大容量液体闪烁体探测器获得的,该实验位于意大利的地下 Gran Sasso 国家实验室。主要的实验挑战是识别仅比背景多几个计数的过量信号,每天每 100 吨目标只有几个计数,这归因于 CNO 中微子的相互作用。过去五年中,探测器的热稳定技术的进步使我们能够开发出一种方法来限制污染闪烁体的铋-210 的速率。在 CNO 循环中,氢的核聚变由碳、氮和氧催化,因此其速率以及发射的 CNO 中微子通量直接取决于这些元素在太阳核心中的丰度。因此,这一结果为使用 CNO 中微子直接测量太阳金属丰度铺平了道路。我们的发现量化了 CNO 核聚变在太阳中的相对贡献,其量级约为 1%;然而,在大质量恒星中,这是能量产生的主要过程。这项工作提供了宇宙中恒星将氢转化为氦的主要机制的实验证据。