Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364 002, India.
Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India.
J Phys Chem B. 2020 Dec 10;124(49):11165-11174. doi: 10.1021/acs.jpcb.0c07809. Epub 2020 Nov 26.
Purpose-built molecules that follow the fundamental process of photosynthesis have significance in developing better insight into the natural photosynthesis process. Quinones have a significant role as electron acceptors in natural photosynthesis, and their reduction is assisted through H-bond donation or protonation. The major challenge in such studies is to couple the multielectron and proton-transfer process and to achieve a reasonably stable charge-separated state for the elucidation of the mechanistic pathway. We have tried to address this issue through the design of a donor-acceptor-donor molecular triad (2RuAQ) derived from two equivalent [Ru(bpy)] derivatives and a bridging anthraquinone moiety (AQ). Photoinduced proton-coupled electron transfer (PCET) for this molecular triad was systematically investigated in the absence and presence of hexafluoroisopropanol and -toluenesulfonic acid (PTSA) using time-resolved absorption spectroscopy in the ultrafast time domain. Results reveal the generation of a relatively long-lived charge-separated state in this multi-electron transfer reaction, and we could confirm the generation of AQ and Ru as the transient intermediates. We could rationalize the mechanistic pathway and the dynamics associated with photoinduced processes and the role of H-bonding in stabilizing charge-separated states. Transient absorption spectroscopic studies reveal that the rates of intramolecular electron transfer and the mechanistic pathways associated with the PCET process are significantly different in different solvent compositions having different polarities. In acetonitrile, a concerted PCET mechanism prevails, whereas the stepwise PCET reaction process is observed in the presence of PTSA. The results of the present study represent a unique model for the mechanistic diversity of PCET reactions.
为了更好地了解自然光合作用过程,专门设计的遵循光合作用基本过程的分子在这方面具有重要意义。醌类物质在自然光合作用中作为电子受体具有重要作用,其还原通过氢键供体或质子化来辅助。此类研究的主要挑战是偶联多电子和质子转移过程,并实现合理稳定的电荷分离态,以阐明其机制途径。我们通过设计一个由两个等效的[Ru(bpy)]衍生物和一个桥连蒽醌部分(AQ)组成的给体-受体-给体三联体(2RuAQ)来解决这个问题。在没有和存在六氟异丙醇和对甲苯磺酸(PTSA)的情况下,使用超快时间域中的时间分辨吸收光谱系统地研究了这个分子三联体的光诱导质子耦合电子转移(PCET)。结果表明,在这个多电子转移反应中,产生了一个相对长寿命的电荷分离态,我们可以确认 AQ 和 Ru 的生成是瞬态中间体。我们可以合理地解释与光诱导过程相关的机制途径和动力学,以及氢键在稳定电荷分离态中的作用。瞬态吸收光谱研究表明,在具有不同极性的不同溶剂组成中,分子内电子转移的速率和与 PCET 过程相关的机制途径显著不同。在乙腈中,协同 PCET 机制占主导地位,而在存在 PTSA 的情况下则观察到分步 PCET 反应过程。本研究的结果代表了 PCET 反应机制多样性的独特模型。