Suppr超能文献

利用磁共振成像数据估计脑胶质瘤的局部细胞密度。

Estimating Local Cellular Density in Glioma Using MR Imaging Data.

机构信息

From the Departments of Imaging Physics (E.D.H.G., J.S.L., J.D.H., D.T.F.).

The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (E.D.H.G.), Houston, Texas.

出版信息

AJNR Am J Neuroradiol. 2021 Jan;42(1):102-108. doi: 10.3174/ajnr.A6884. Epub 2020 Nov 26.

Abstract

BACKGROUND AND PURPOSE

Increased cellular density is a hallmark of gliomas, both in the bulk of the tumor and in areas of tumor infiltration into surrounding brain. Altered cellular density causes altered imaging findings, but the degree to which cellular density can be quantitatively estimated from imaging is unknown. The purpose of this study was to discover the best MR imaging and processing techniques to make quantitative and spatially specific estimates of cellular density.

MATERIALS AND METHODS

We collected stereotactic biopsies in a prospective imaging clinical trial targeting untreated patients with gliomas at our institution undergoing their first resection. The data included preoperative MR imaging with conventional anatomic, diffusion, perfusion, and permeability sequences and quantitative histopathology on biopsy samples. We then used multiple machine learning methodologies to estimate cellular density using local intensity information from the MR images and quantitative cellular density measurements at the biopsy coordinates as the criterion standard.

RESULTS

The random forest methodology estimated cellular density with = 0.59 between predicted and observed values using 4 input imaging sequences chosen from our full set of imaging data (T2, fractional anisotropy, CBF, and area under the curve from permeability imaging). Limiting input to conventional MR images (T1 pre- and postcontrast, T2, and FLAIR) yielded slightly degraded performance ( = 0.52). Outputs were also reported as graphic maps.

CONCLUSIONS

Cellular density can be estimated with moderate-to-strong correlations using MR imaging inputs. The random forest machine learning model provided the best estimates. These spatially specific estimates of cellular density will likely be useful in guiding both diagnosis and treatment.

摘要

背景与目的

无论是在肿瘤实体部位还是在肿瘤浸润周围脑组织的部位,细胞密度增加都是神经胶质瘤的特征之一。细胞密度的改变会导致影像学表现的改变,但从影像学上定量估计细胞密度的程度尚不清楚。本研究的目的是发现最佳的磁共振成像和处理技术,以对细胞密度进行定量和空间特异性估计。

材料与方法

我们在本机构进行的一项针对未经治疗的脑胶质瘤患者的前瞻性影像学临床试验中,收集了立体定向活检。该数据包括术前常规解剖、弥散、灌注和渗透性序列的磁共振成像以及活检样本的定量组织病理学检查。然后,我们使用多种机器学习方法,使用来自磁共振图像的局部强度信息以及活检坐标处的定量细胞密度测量值作为标准,来估计细胞密度。

结果

随机森林方法使用从我们的全部成像数据中选择的 4 个输入成像序列(T2、各向异性分数、CBF 和渗透性成像的曲线下面积),预测值与观测值之间的 = 0.59。将输入限制为常规磁共振图像(T1 增强前后、T2 和 FLAIR)会导致性能略有下降(= 0.52)。输出也以图形地图的形式报告。

结论

使用磁共振成像输入可以以中等至强相关性来估计细胞密度。随机森林机器学习模型提供了最佳估计。这些细胞密度的空间特异性估计可能有助于指导诊断和治疗。

相似文献

1
3
Imaging-Based Algorithm for the Local Grading of Glioma.基于影像的脑胶质瘤分级算法。
AJNR Am J Neuroradiol. 2020 Mar;41(3):400-407. doi: 10.3174/ajnr.A6405. Epub 2020 Feb 6.

引用本文的文献

本文引用的文献

1
Imaging-Based Algorithm for the Local Grading of Glioma.基于影像的脑胶质瘤分级算法。
AJNR Am J Neuroradiol. 2020 Mar;41(3):400-407. doi: 10.3174/ajnr.A6405. Epub 2020 Feb 6.
6
Performance Assessment for Brain MR Imaging Registration Methods.脑磁共振成像配准方法的性能评估
AJNR Am J Neuroradiol. 2017 May;38(5):973-980. doi: 10.3174/ajnr.A5122. Epub 2017 Mar 9.
8
Dynamic contrast-enhanced MRI for oncology drug development.用于肿瘤药物研发的动态对比增强磁共振成像
J Magn Reson Imaging. 2016 Aug;44(2):251-64. doi: 10.1002/jmri.25173. Epub 2016 Feb 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验