From the Departments of Imaging Physics (E.D.H.G., J.S.L., J.D.H., D.T.F.).
The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (E.D.H.G.), Houston, Texas.
AJNR Am J Neuroradiol. 2021 Jan;42(1):102-108. doi: 10.3174/ajnr.A6884. Epub 2020 Nov 26.
Increased cellular density is a hallmark of gliomas, both in the bulk of the tumor and in areas of tumor infiltration into surrounding brain. Altered cellular density causes altered imaging findings, but the degree to which cellular density can be quantitatively estimated from imaging is unknown. The purpose of this study was to discover the best MR imaging and processing techniques to make quantitative and spatially specific estimates of cellular density.
We collected stereotactic biopsies in a prospective imaging clinical trial targeting untreated patients with gliomas at our institution undergoing their first resection. The data included preoperative MR imaging with conventional anatomic, diffusion, perfusion, and permeability sequences and quantitative histopathology on biopsy samples. We then used multiple machine learning methodologies to estimate cellular density using local intensity information from the MR images and quantitative cellular density measurements at the biopsy coordinates as the criterion standard.
The random forest methodology estimated cellular density with = 0.59 between predicted and observed values using 4 input imaging sequences chosen from our full set of imaging data (T2, fractional anisotropy, CBF, and area under the curve from permeability imaging). Limiting input to conventional MR images (T1 pre- and postcontrast, T2, and FLAIR) yielded slightly degraded performance ( = 0.52). Outputs were also reported as graphic maps.
Cellular density can be estimated with moderate-to-strong correlations using MR imaging inputs. The random forest machine learning model provided the best estimates. These spatially specific estimates of cellular density will likely be useful in guiding both diagnosis and treatment.
无论是在肿瘤实体部位还是在肿瘤浸润周围脑组织的部位,细胞密度增加都是神经胶质瘤的特征之一。细胞密度的改变会导致影像学表现的改变,但从影像学上定量估计细胞密度的程度尚不清楚。本研究的目的是发现最佳的磁共振成像和处理技术,以对细胞密度进行定量和空间特异性估计。
我们在本机构进行的一项针对未经治疗的脑胶质瘤患者的前瞻性影像学临床试验中,收集了立体定向活检。该数据包括术前常规解剖、弥散、灌注和渗透性序列的磁共振成像以及活检样本的定量组织病理学检查。然后,我们使用多种机器学习方法,使用来自磁共振图像的局部强度信息以及活检坐标处的定量细胞密度测量值作为标准,来估计细胞密度。
随机森林方法使用从我们的全部成像数据中选择的 4 个输入成像序列(T2、各向异性分数、CBF 和渗透性成像的曲线下面积),预测值与观测值之间的 = 0.59。将输入限制为常规磁共振图像(T1 增强前后、T2 和 FLAIR)会导致性能略有下降(= 0.52)。输出也以图形地图的形式报告。
使用磁共振成像输入可以以中等至强相关性来估计细胞密度。随机森林机器学习模型提供了最佳估计。这些细胞密度的空间特异性估计可能有助于指导诊断和治疗。