Suppr超能文献

7 个世纪的重建布拉马普特拉河径流量表明,高估了高流量和洪水灾害的频率。

Seven centuries of reconstructed Brahmaputra River discharge demonstrate underestimated high discharge and flood hazard frequency.

机构信息

Tree Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, 10964, USA.

Department of Earth and Environmental Science, Columbia University, New York, NY, 10027, USA.

出版信息

Nat Commun. 2020 Nov 26;11(1):6017. doi: 10.1038/s41467-020-19795-6.

Abstract

The lower Brahmaputra River in Bangladesh and Northeast India often floods during the monsoon season, with catastrophic consequences for people throughout the region. While most climate models predict an intensified monsoon and increase in flood risk with warming, robust baseline estimates of natural climate variability in the basin are limited by the short observational record. Here we use a new seven-century (1309-2004 C.E) tree-ring reconstruction of monsoon season Brahmaputra discharge to demonstrate that the early instrumental period (1956-1986 C.E.) ranks amongst the driest of the past seven centuries (13 percentile). Further, flood hazard inferred from the recurrence frequency of high discharge years is severely underestimated by 24-38% in the instrumental record compared to previous centuries and climate model projections. A focus on only recent observations will therefore be insufficient to accurately characterise flood hazard risk in the region, both in the context of natural variability and climate change.

摘要

孟加拉国和印度东北部的下布拉马普特拉河在季风季节经常泛滥,给整个地区的人民带来灾难性的后果。尽管大多数气候模型预测随着气候变暖,季风会加剧,洪水风险会增加,但由于观测记录时间短,该流域自然气候变率的可靠基准估计受到限制。在这里,我们使用新的七个世纪(公元 1309-2004 年)的季风季节布拉马普特拉河流量的树木年轮重建,证明早期的仪器记录时期(公元 1956-1986 年)是过去七个世纪中最干旱的时期之一(排在第 13%位)。此外,与前几个世纪和气候模型的预测相比,从高流量年份重现频率推断的洪水灾害危险在仪器记录中被低估了 24-38%。因此,如果只关注最近的观测结果,将不足以准确描述该地区的洪水灾害风险,无论是在自然变率还是气候变化的背景下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/131b/7692521/5fc8b837fa8c/41467_2020_19795_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验