Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Global Patient Safety, Eli Lilly and Company, Indianapolis, Indiana, USA.
Clin Pharmacol Ther. 2021 May;109(5):1353-1360. doi: 10.1002/cpt.2119. Epub 2020 Dec 17.
Self-controlled designs, specifically the case-crossover (CCO) and the self-controlled case series (SCCS), are increasingly utilized to generate real-world evidence (RWE) on drug-drug interactions (DDIs). Although these designs share the advantages and limitations of within-individual comparison, they also have design-specific assumptions. It is not known to what extent the differences in assumptions lead to different results in RWE DDI analyses. Using a nationwide US commercial healthcare insurance database (2006-2016), we compared the CCO and SCCS designs, as they are implemented in DDI studies, within five DDI-outcome examples: (1) simvastatin + clarithromycin and muscle-related toxicity; (2) atorvastatin + valsartan, and muscle-related toxicity; and (3-5) dabigatran + P-glycoprotein inhibitor (clarithromycin, amiodarone, and verapamil) and bleeding. Analyses were conducted within person-time exposed to the object drug (statins and dabigatran) and adjusted for bias associated with the inhibiting drugs via control groups of individuals unexposed to the object drug. The designs yielded similar estimates in most examples, with SCCS displaying better statistical efficiency. With both designs, results varied across sensitivity analyses, particularly in CCO analyses with small number of exposed individuals. Analyses in controls revealed substantial bias that may be differential across DDI-exposed and control individuals. Thus, both designs showed no association between amiodarone or verapamil and bleeding in dabigatran-exposed but revealed strong positive associations in controls. Overall, bias adjustment via a control group had a larger impact on results than the choice of a design, highlighting the importance and challenges of appropriate control group selection for adequate bias control in self-controlled analyses of DDIs.
自身对照设计,特别是病例交叉(CCO)和自身对照病例系列(SCCS),越来越多地被用于生成药物相互作用(DDI)的真实世界证据(RWE)。虽然这些设计具有个体内比较的优势和局限性,但它们也有设计特有的假设。尚不清楚这些假设的差异在 RWE DDI 分析中会导致何种程度的结果差异。
我们使用美国全国性商业医疗保险数据库(2006-2016 年),比较了 CCO 和 SCCS 设计,因为它们在 DDI 研究中被实施,针对五个 DDI 结果示例:(1)辛伐他汀+克拉霉素和肌肉相关毒性;(2)阿托伐他汀+缬沙坦,和肌肉相关毒性;和(3-5)达比加群+P-糖蛋白抑制剂(克拉霉素、胺碘酮和维拉帕米)和出血。分析是在个体接受目标药物(他汀类药物和达比加群)的个体时间内进行的,并通过未暴露于目标药物的个体的对照组调整了与抑制药物相关的偏倚。在大多数示例中,SCCS 设计产生了相似的估计值,显示出更好的统计效率。
在这两种设计中,结果在敏感性分析中有所不同,尤其是在暴露个体数量较少的 CCO 分析中。在对照组的分析中发现了大量的偏倚,这种偏倚可能在 DDI 暴露和对照组个体之间存在差异。因此,两种设计都没有发现胺碘酮或维拉帕米与达比加群暴露者的出血之间存在关联,但在对照组中发现了强烈的正相关。
总体而言,通过对照组进行偏倚调整对结果的影响大于设计选择,突出了在 DDI 的自身对照分析中,选择适当的对照组进行适当的偏倚控制对于获得可靠结果的重要性和挑战。