CUNY School of Public Health, New York, New York, USA.
IBM Research, Yorktown Heights, New York, USA.
Biometrics. 2023 Jun;79(2):1330-1343. doi: 10.1111/biom.13749. Epub 2022 Oct 21.
The case-crossover design of Maclure is widely used in epidemiology and other fields to study causal effects of transient treatments on acute outcomes. However, its validity and causal interpretation have only been justified under informal conditions. Here, we place the design in a formal counterfactual framework for the first time. Doing so helps to clarify its assumptions and interpretation. In particular, when the treatment effect is nonnull, we identify a previously unnoticed bias arising from strong common causes of the outcome at different person-times. We analyze this bias and demonstrate its potential importance with simulations. We also use our derivation of the limit of the case-crossover estimator to analyze its sensitivity to treatment effect heterogeneity, a violation of one of the informal criteria for validity. The upshot of this work for practitioners is that, while the case-crossover design can be useful for testing the causal null hypothesis in the presence of baseline confounders, extra caution is warranted when using the case-crossover design for point estimation of causal effects.
麦克卢尔病例交叉设计在流行病学和其他领域被广泛用于研究短暂治疗对急性结果的因果效应。然而,其有效性和因果解释仅在非正式条件下得到证明。在这里,我们首次将该设计置于正式的反事实框架中。这样做有助于澄清其假设和解释。特别是,当治疗效果不为零时,我们发现了一个以前未被注意到的偏差,该偏差源于不同个体时间上结果的强共同原因。我们分析了这种偏差,并通过模拟证明了其重要性。我们还使用我们对病例交叉估计量极限的推导来分析其对治疗效果异质性的敏感性,这违反了有效性的非正式标准之一。这项工作对实践者的意义在于,虽然病例交叉设计在存在基线混杂因素的情况下可以用于检验因果零假设,但在使用病例交叉设计进行因果效应的点估计时需要格外小心。