Suppr超能文献

一种生物信息学方法,用于研究细胞因子基因及其受体变异与 COVID-19 进展的关系。

A bioinformatic approach to investigating cytokine genes and their receptor variants in relation to COVID-19 progression.

机构信息

Department of Medical Genetics, Bulent Ecevit University, Zonguldak, Turkey.

出版信息

Int J Immunogenet. 2021 Apr;48(2):211-218. doi: 10.1111/iji.12522. Epub 2020 Nov 27.

Abstract

Severe acute respiratory syndrome coronavirus 2 infection produces a wide spectrum of manifestations, ranging from no symptom to viral pneumonia. This study aimed to determine the genetic variations in cytokines and their receptors in relation to COVID-19 pathogenesis using bioinformatic tools. Single nucleotide polymorphisms (SNPs) of genes encoding the cytokines and cytokine receptors elevated in patients with COVID-19 were determined from the National Biotechnology Information Center website (using the dbSNP database). Missense variants were found in 3 cytokine genes and 10 cytokine receptor genes. Computational analyses were conducted to detect the effects of these missense SNPs via cloud-based software tools. Also, the miRSNP database was used to explore whether SNPs in the 3'-UTR altered the miRNA binding efficiency for genes of cytokines and their receptors. Our in silico studies revealed that one SNP in the vascular endothelial growth factor receptor 2 (VEGFR2) gene was predicted as deleterious using sorting intolerant from tolerant. Also, the stability of VEGFR2 decreased in the I-Mutant2.0 (biotool for predicting stability changes upon mutation from the protein sequence or structure) prediction. It was suggested that the decrease in VEGFR2 function (due to the rs1870377 polymorphism) may be correlated with the progression of COVID-19 or contribute to the pathogenesis. Moreover, 27 SNPs were determined to affect miRNA binding for the genes of cytokine receptors. CXCR2 rs1126579, TNFRSF1B rs1061624 and IL10RB rs8178562 SNPs were predicted to break the miRNA-mRNA binding sites for miR-516a-3, miR-720 and miR-328, respectively. These miRNAs play an important role in immune regulation and lung damage repair. Further studies are needed to evaluate the importance of these miRNAs and the SNPs.

摘要

严重急性呼吸综合征冠状病毒 2 感染产生广泛的表现,从无症状到病毒性肺炎。本研究旨在使用生物信息学工具确定与 COVID-19 发病机制相关的细胞因子及其受体的遗传变异。从国家生物技术信息中心网站(使用 dbSNP 数据库)确定了编码细胞因子和细胞因子受体的基因中的单核苷酸多态性(SNP)。在 3 个细胞因子基因和 10 个细胞因子受体基因中发现了错义变异。通过基于云的软件工具进行计算分析,以检测这些错义 SNP 的影响。此外,还使用 miRSNP 数据库来探索 3'-UTR 中的 SNP 是否改变了细胞因子及其受体基因的 miRNA 结合效率。我们的计算机研究表明,血管内皮生长因子受体 2(VEGFR2)基因中的一个 SNP 使用从宽容到不耐受的排序被预测为有害。此外,在 I-Mutant2.0(用于从蛋白质序列或结构预测突变引起的功能稳定性变化的生物工具)预测中,VEGFR2 的稳定性降低。据推测,VEGFR2 功能的降低(由于 rs1870377 多态性)可能与 COVID-19 的进展相关,或者有助于发病机制。此外,确定了 27 个 SNP 影响细胞因子受体基因的 miRNA 结合。CXCR2 rs1126579、TNFRSF1B rs1061624 和 IL10RB rs8178562 SNP 分别被预测破坏了 miR-516a-3、miR-720 和 miR-328 的 miRNA-mRNA 结合位点。这些 miRNA 在免疫调节和肺损伤修复中发挥重要作用。需要进一步研究来评估这些 miRNA 和 SNP 的重要性。

相似文献

1
A bioinformatic approach to investigating cytokine genes and their receptor variants in relation to COVID-19 progression.
Int J Immunogenet. 2021 Apr;48(2):211-218. doi: 10.1111/iji.12522. Epub 2020 Nov 27.
2
Identification of a functional SNP in the 3'UTR of CXCR2 that is associated with reduced risk of lung cancer.
Cancer Res. 2015 Feb 1;75(3):566-75. doi: 10.1158/0008-5472.CAN-14-2101. Epub 2014 Dec 5.
6
The Computational Analysis Conducted on miRNA Target Sites in Association with SNPs at 3'UTR of ADHD-implicated Genes.
Cent Nerv Syst Agents Med Chem. 2020;20(1):58-75. doi: 10.2174/1871524919666191014104843.
7
Bioinformatic prediction of SNPs within miRNA binding sites of inflammatory genes associated with gastric cancer.
Asian Pac J Cancer Prev. 2014;15(2):937-43. doi: 10.7314/apjcp.2014.15.2.937.
10
Exploration of deleterious single nucleotide polymorphisms in the components of human P bodies: an in silico approach.
Gene. 2013 Oct 10;528(2):360-3. doi: 10.1016/j.gene.2013.07.010. Epub 2013 Jul 24.

引用本文的文献

1
Genetic variants in as risk factors for mortality in patients unrelated but not associated with families with severe COVID-19.
Heliyon. 2024 Apr 9;10(8):e29493. doi: 10.1016/j.heliyon.2024.e29493. eCollection 2024 Apr 30.
3
In Silico Prediction of Functional SNPs Interrupting Antioxidant Defense Genes in Relation to COVID-19 Progression.
Biochem Genet. 2025 Feb;63(1):499-525. doi: 10.1007/s10528-024-10705-9. Epub 2024 Mar 9.
4
Host genetic polymorphisms involved in long-term symptoms of COVID-19.
Emerg Microbes Infect. 2023 Dec;12(2):2239952. doi: 10.1080/22221751.2023.2239952.
5
PD-1CXCR5CD4 peripheral helper T cells promote CXCR3 plasmablasts in human acute viral infection.
Cell Rep. 2023 Jan 31;42(1):111895. doi: 10.1016/j.celrep.2022.111895. Epub 2023 Jan 2.
6
miRNA expression in COVID-19.
Gene Rep. 2022 Sep;28:101641. doi: 10.1016/j.genrep.2022.101641. Epub 2022 Jul 16.
7
Systems biology models to identify the influence of SARS-CoV-2 infections to the progression of human autoimmune diseases.
Inform Med Unlocked. 2022;32:101003. doi: 10.1016/j.imu.2022.101003. Epub 2022 Jul 6.
8
Hallmarks of Severe COVID-19 Pathogenesis: Between Viral and Host Factors.
Front Immunol. 2022 Jun 10;13:912336. doi: 10.3389/fimmu.2022.912336. eCollection 2022.
10
Inflammatory cytokine storms severity may be fueled by interactions of micronuclei and RNA viruses such as COVID-19 virus SARS-CoV-2. A hypothesis.
Mutat Res Rev Mutat Res. 2021 Jul-Dec;788:108395. doi: 10.1016/j.mrrev.2021.108395. Epub 2021 Sep 28.

本文引用的文献

2
Functional exhaustion of antiviral lymphocytes in COVID-19 patients.
Cell Mol Immunol. 2020 May;17(5):533-535. doi: 10.1038/s41423-020-0402-2. Epub 2020 Mar 19.
3
COVID-19: consider cytokine storm syndromes and immunosuppression.
Lancet. 2020 Mar 28;395(10229):1033-1034. doi: 10.1016/S0140-6736(20)30628-0. Epub 2020 Mar 16.
4
Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis.
Int J Infect Dis. 2020 May;94:91-95. doi: 10.1016/j.ijid.2020.03.017. Epub 2020 Mar 12.
7
Pathological findings of COVID-19 associated with acute respiratory distress syndrome.
Lancet Respir Med. 2020 Apr;8(4):420-422. doi: 10.1016/S2213-2600(20)30076-X. Epub 2020 Feb 18.
8
Role of Host and Pathogen-Derived MicroRNAs in Immune Regulation During Infectious and Inflammatory Diseases.
Front Immunol. 2020 Jan 24;10:3081. doi: 10.3389/fimmu.2019.03081. eCollection 2019.
9
The novel Chinese coronavirus (2019-nCoV) infections: Challenges for fighting the storm.
Eur J Clin Invest. 2020 Mar;50(3):e13209. doi: 10.1111/eci.13209. Epub 2020 Feb 5.
10
Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.
Lancet. 2020 Feb 15;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5. Epub 2020 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验