Suppr超能文献

具有超越衍射极限的多维光学信息的纳米棒。

Nanorods with multidimensional optical information beyond the diffraction limit.

作者信息

Wen Shihui, Liu Yongtao, Wang Fan, Lin Gungun, Zhou Jiajia, Shi Bingyang, Suh Yung Doug, Jin Dayong

机构信息

Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.

Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.

出版信息

Nat Commun. 2020 Nov 27;11(1):6047. doi: 10.1038/s41467-020-19952-x.

Abstract

Precise design and fabrication of heterogeneous nanostructures will enable nanoscale devices to integrate multiple desirable functionalities. But due to the diffraction limit (~200 nm), the optical uniformity and diversity within the heterogeneous functional nanostructures are hardly controlled and characterized. Here, we report a set of heterogeneous nanorods; each optically active section has its unique nonlinear response to donut-shaped illumination, so that one can discern each section with super-resolution. To achieve this, we first realize an approach of highly controlled epitaxial growth and produce a range of heterogeneous structures. Each section along the nanorod structure displays tunable upconversion emissions, in four optical dimensions, including color, lifetime, excitation wavelength, and power dependency. Moreover, we demonstrate a 210 nm single nanorod as an extremely small polychromatic light source for the on-demand generation of RGB photonic emissions. This work benchmarks our ability toward the full control of sub-diffraction-limit optical diversities of single heterogeneous nanoparticles.

摘要

异质纳米结构的精确设计与制造将使纳米级器件能够集成多种理想功能。但由于衍射极限(约200纳米),异质功能纳米结构内的光学均匀性和多样性几乎难以控制和表征。在此,我们报道了一组异质纳米棒;每个光学活性部分对甜甜圈形状的照明都有其独特的非线性响应,从而人们可以用超分辨率辨别每个部分。为实现这一点,我们首先实现了一种高度可控的外延生长方法,并制备了一系列异质结构。沿着纳米棒结构的每个部分在包括颜色、寿命、激发波长和功率依赖性在内的四个光学维度上都显示出可调谐的上转换发射。此外,我们展示了一根210纳米的单纳米棒作为一种极其微小的多色光源,用于按需产生RGB光子发射。这项工作为我们全面控制单个异质纳米颗粒的亚衍射极限光学多样性的能力树立了标杆。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e03b/7695702/a09221cc54bd/41467_2020_19952_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验