Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia.
Third Institute of Physics, Georg-August University of Göttingen, Göttingen, Germany.
Nature. 2020 Mar;579(7797):41-50. doi: 10.1038/s41586-020-2048-8. Epub 2020 Mar 4.
Tremendous progress in nanotechnology has enabled advances in the use of luminescent nanomaterials in imaging, sensing and photonic devices. This translational process relies on controlling the photophysical properties of the building block, that is, single luminescent nanoparticles. In this Review, we highlight the importance of single-particle spectroscopy in revealing the diverse optical properties and functionalities of nanomaterials, and compare it with ensemble fluorescence spectroscopy. The information provided by this technique has guided materials science in tailoring the synthesis of nanomaterials to achieve optical uniformity and to develop novel applications. We discuss the opportunities and challenges that arise from pushing the resolution limit, integrating measurement and manipulation modalities, and establishing the relationship between the structure and functionality of single nanoparticles.
纳米技术的巨大进步使得在成像、传感和光子器件中使用发光纳米材料取得了进展。这一转化过程依赖于控制构建块的光物理性质,即单个发光纳米粒子。在这篇综述中,我们强调了单粒子光谱学在揭示纳米材料的多种光学性质和功能方面的重要性,并将其与整体荧光光谱学进行了比较。该技术提供的信息指导了材料科学对纳米材料合成的调整,以实现光学均匀性并开发新的应用。我们讨论了推动分辨率极限、整合测量和操纵模式以及建立单个纳米粒子的结构和功能关系所带来的机遇和挑战。