Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA.
Anal Bioanal Chem. 2021 Feb;413(4):1017-1025. doi: 10.1007/s00216-020-03060-2. Epub 2020 Nov 27.
Microbial resistance to currently available antibiotics poses a great threat in the global fight against infections. An important step in determining bacterial antibiotic resistance can be selective DNA sequence capture and fluorescence labeling. In this paper, we demonstrate the fabrication of simple, robust, inexpensive microfluidic devices for DNA capture and fluorescence detection of a model antibiotic resistance gene sequence. We laser micromachined polymethyl methacrylate microchannels and enclosed them using pressure-sensitive adhesive tapes. We then formed porous polymer monoliths with DNA capture probes in these microchannels and used them for sequence-specific capture, fluorescent labeling, and laser-induced fluorescence detection of picomolar (pM) concentrations of synthetic and plasmid antibiotic resistance gene targets. The relative fluorescence for the elution peaks increased with loaded target DNA concentration. We observed higher fluorescence signal and percent recovery for synthetic target DNA compared to plasmid DNA at the same loaded target concentration. A non-target gene was used for control experiments and produced < 3% capture relative to the same concentration of target. The full analysis process including device fabrication was completed in less than 90 min with a limit of detection of 30 pM. The simplicity of device fabrication and good DNA capture selectivity demonstrated herein have potential for application with processes for bacterial plasmid DNA extraction and single-particle counting to facilitate determination of antibiotic susceptibility. Graphical abstract.
目前可用的抗生素的微生物耐药性对全球抗感染斗争构成了巨大威胁。确定细菌抗生素耐药性的一个重要步骤是选择性 DNA 序列捕获和荧光标记。在本文中,我们展示了用于捕获 DNA 和荧光检测模型抗生素耐药基因序列的简单、坚固、廉价的微流控器件的制造。我们使用激光微加工聚甲基丙烯酸甲酯微通道,并使用压敏胶带将其封闭。然后,我们在这些微通道中形成具有 DNA 捕获探针的多孔聚合物整体,并将其用于对皮摩尔(pM)浓度的合成和质粒抗生素耐药基因靶标进行序列特异性捕获、荧光标记和激光诱导荧光检测。洗脱峰的相对荧光强度随负载目标 DNA 浓度的增加而增加。与相同负载目标浓度的质粒 DNA 相比,我们观察到合成靶 DNA 产生更高的荧光信号和更高的百分比恢复。非靶基因用于对照实验,相对于相同浓度的靶基因,捕获率<3%。包括器件制造在内的整个分析过程在 90 分钟内完成,检测限为 30 pM。本文展示的器件制造的简单性和良好的 DNA 捕获选择性具有应用于细菌质粒 DNA 提取和单颗粒计数过程的潜力,以促进抗生素敏感性的确定。