Istituto di Chimica Biomolecolare ICB-CNR, Sede Secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100 Sassari, Italy.
Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179 Tbilisi, Georgia.
Anal Chim Acta. 2021 Jan 2;1141:194-205. doi: 10.1016/j.aca.2020.10.050. Epub 2020 Oct 27.
Liquid-phase chromatography on chiral stationary phase is still the most popular and versatile technique to separate enantiomers, which is based on the ability of a chiral selector (CS) to recognize the enantiomers of a chiral compound in a solvating medium. The knowledge of the molecular bases of the enantiodiscrimination process is a basic requirement to approach rationally the enantioseparation task. Indeed, analyte, CS, and mobile phase (MP) being the pivotal components of the chromatographic system, their properties, functions and mutual noncovalent interactions determine the enantioseparation outcome. In the last few decades, focused computational methods and techniques have been integrating experimental data and applying for the comprehension of the enantiorecognition phenomenon at molecular level. In this context, for understanding of molecular mechanisms of chiral recognition in separation of enantiomers, we propose a computational procedure based on conformational and electrostatic potential (V) analysis of both analyte and selector. First, low-energy conformers of the analyte were identified by conformational search, which occurring potentially on the selector surface. Then, local electron charge density of specific molecular regions of the interacting partners were inspected in terms of calculated V. This approach was used to explore at molecular level the enantioseparation mechanism of 2-(benzylsulfinyl)benzamide on cellulose-based CSs. By correlating calculated properties with experimental chromatographic parameters available in the literature, the structural landscape of the analyte and CSs in the enantiodiscrimination event and the differences between potential competing sites were profiled. A conformational transition of analyte structure on the CS surface was found to originate the exceptional enantioseparation of the 2-(benzylsulfinyl)benzamide (α > 100). Importantly, the proposed computational analysis provides a rationale of why and how the analytical separation occurs.
手性固定相液相色谱仍然是分离对映异构体最流行和通用的技术,它基于手性选择剂 (CS) 在溶剂化介质中识别手性化合物对映体的能力。了解对映体识别过程的分子基础是合理处理对映体分离任务的基本要求。事实上,分析物、CS 和流动相 (MP) 是色谱系统的关键组成部分,它们的性质、功能和相互非共价相互作用决定了对映体分离的结果。在过去的几十年中,专注的计算方法和技术一直在整合实验数据,并应用于在分子水平上理解对映体识别现象。在这种情况下,为了理解手性识别在分离对映体中的分子机制,我们提出了一种基于分析物和选择器构象和静电势 (V) 分析的计算程序。首先,通过构象搜索确定分析物的低能构象,这些构象可能发生在选择器表面上。然后,根据计算的 V 检查相互作用伙伴特定分子区域的局部电子电荷密度。该方法用于在分子水平上探索 2-(苯基亚砜基)苯甲酰胺在手性纤维素基 CS 上的对映体分离机制。通过将计算得到的性质与文献中可用的实验色谱参数相关联,分析物和 CS 在对映体识别事件中的结构景观以及潜在竞争位点之间的差异得到了描述。发现分析物结构在 CS 表面上的构象转变是导致 2-(苯基亚砜基)苯甲酰胺 (α>100) 异常对映体分离的原因。重要的是,所提出的计算分析提供了为什么和如何发生分析分离的原理。