Suppr超能文献

均匀分散的超小氧化铌(V)纳米颗粒可提高复合聚合物电解质的离子电导率和界面相容性。

Homogenously dispersed ultrasmall niobium(V) oxide nanoparticles enabling improved ionic conductivity and interfacial compatibility of composite polymer electrolyte.

作者信息

Tian Liying, Li An, Huang Qinqin, Zhang Yayun, Long Donghui

机构信息

State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.

State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.

出版信息

J Colloid Interface Sci. 2021 Mar 15;586:855-865. doi: 10.1016/j.jcis.2020.11.010. Epub 2020 Nov 6.

Abstract

Composite polymer electrolytes (CPEs) decorated with ceramic fillers have emerged as appealing structures that exhibit coalesced merits of both inorganic and polymer solid electrolytes, but are currently challenged by the particle agglomeration that weakens ionic conductivity and electrochemical performances. Herein, a facile solvothermal method is proposed to fabricate the ultrasmall niobium(V) oxide (NbO) nanoparticle of average size being less than 3 nm, enabling the composite polymer electrolyte with homogenous dispersity (nano-CPE). Owning to the superior dispersity of ultrasmall NbO nanoparticles, the polymer chains can be effectively disordered to enhance the local segmental motion through the physical interruption. Moreover, strong Lewis acid-based interactions between NbO nanoparticles and lithium salts are formed, resulting in accelerating the dissociation of lithium salt and releasing more free charge carriers. Therefore, the 3D connected Li fast pathways along the amorphous region between the NbO nanoparticles and polymer chains are constructed, ensuring the improved ionic conductivity. In addition, the homogenous Li deposition can also be simultaneously achieved through the intimate interfacial contact, which can efficiently suppress the growth of lithium dendrite in the metal anode. The fabricated nano-CPE presents a high ionic conductivity of 6.6 × 10 S/cm at room temperature and wide anti-oxidative potential of 5.1 V. The lithium symmetric battery using nano-CPE delivers a decent lithium plating/stripping performance for 200 h at 0.5 mA/cm. The solid-sate LiFePO battery achieves long stable cycling performances (151mAh/g and 140 mAh/g after 230 cycles at 0.5C and 1.0C, respectively). This work may offer a facile and efficient synthesized method of highly dispersed ultrasmall nanoparticles for advancing the CPE with improved ionic conductivity, interfacial contact and cell performances.

摘要

用陶瓷填料修饰的复合聚合物电解质(CPE)已成为一种有吸引力的结构,它展现出无机和聚合物固体电解质的综合优点,但目前受到颗粒团聚的挑战,这种团聚削弱了离子电导率和电化学性能。在此,提出了一种简便的溶剂热法来制备平均尺寸小于3nm的超小氧化铌(NbO)纳米颗粒,从而得到具有均匀分散性的复合聚合物电解质(纳米CPE)。由于超小NbO纳米颗粒具有优异的分散性,聚合物链可通过物理干扰有效地无序排列,从而增强局部链段运动。此外,NbO纳米颗粒与锂盐之间形成了基于强路易斯酸的相互作用,加速了锂盐的解离并释放出更多自由电荷载流子。因此,沿着NbO纳米颗粒与聚合物链之间的非晶区域构建了三维连通的Li快速通道,确保了离子电导率的提高。此外,通过紧密的界面接触还能同时实现均匀的Li沉积,这可以有效抑制金属阳极中锂枝晶的生长。所制备的纳米CPE在室温下具有6.6×10 S/cm的高离子电导率和5.1V的宽抗氧化电位。使用纳米CPE的锂对称电池在0.5mA/cm²下具有200小时良好的锂电镀/剥离性能。固态LiFePO₄电池实现了长期稳定的循环性能(在0.5C和1.0C下分别循环230次后为151mAh/g和140mAh/g)。这项工作可能为推进具有改善的离子电导率、界面接触和电池性能的CPE提供一种简便有效的高分散超小纳米颗粒合成方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验