Cheng Bing, Du Peng, Xiao Jin, Zhan Xiaowen, Zhu Lingyun
School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui, China.
ACS Appl Mater Interfaces. 2024 Jun 19;16(24):31648-31656. doi: 10.1021/acsami.4c06803. Epub 2024 Jun 5.
Utilizing aluminum-doped nano LLZO (LiLaZrAlO) as the ceramic filler, we synthesized and optimized LLZO/PVDF/LiClO composite polymer electrolytes (CPEs) to achieve high ionic conductivity and good interfacial stability with metallic lithium. The research examines how the PVDF grade and the mass ratio of PVDF to LiClO affect the ionic conductivity, lithium metal compatibility, and overall performance of CPEs. The CPE using Kynar PVDF 741 and a PVDF-to-LiClO mass ratio of 2:1 emerged as superior, displaying a high ionic conductivity at room temperature (0.12 mS/cm), the lowest activation energy (0.247 eV), an extensive electrochemical stability window (approximately 4.9 V), and robust mechanical strength. In tests with lithium metal symmetric cells, the membrane facilitated over 1000 h of stable cycling at 0.1 mA cm and 0.1 mAh cm. Furthermore, when integrated into full solid-state lithium-metal batteries with LiFePO cathodes, it sustained more than 80% capacity retention across 500 charge/discharge cycles at a rate of 0.5 C with constantly high Coulombic efficiencies above 99.8%, underscoring its exceptional durability and efficiency. This research provides a practical framework and benchmarks for developing LLZO/PVDF-based CPEs with high ionic conductivity and enhanced stability against lithium metals.
我们以掺铝的纳米LLZO(LiLaZrAlO)作为陶瓷填料,合成并优化了LLZO/PVDF/LiClO复合聚合物电解质(CPE),以实现高离子电导率以及与金属锂良好的界面稳定性。该研究考察了PVDF的等级以及PVDF与LiClO的质量比对CPE的离子电导率、锂金属兼容性和整体性能的影响。使用Kynar PVDF 741且PVDF与LiClO质量比为2:1的CPE表现出色,在室温下显示出高离子电导率(0.12 mS/cm)、最低活化能(0.247 eV)、宽电化学稳定窗口(约4.9 V)以及强大的机械强度。在锂金属对称电池测试中,该膜在0.1 mA cm和0.1 mAh cm下实现了超过1000小时的稳定循环。此外,当集成到具有LiFePO正极的全固态锂金属电池中时,在0.5 C倍率下经过500次充放电循环,其容量保持率超过80%,库仑效率持续高于99.8%,突出了其卓越的耐久性和效率。这项研究为开发具有高离子电导率和增强的抗锂金属稳定性的基于LLZO/PVDF的CPE提供了一个实用的框架和基准。