Suppr超能文献

评价机器学习算法预测化学-生物合成共聚物水动力半径和转变温度。

Evaluation of machine learning algorithms to predict the hydrodynamic radii and transition temperatures of chemo-biologically synthesized copolymers.

机构信息

Biomedical Materials Science, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS, 39216, USA.

Information Technology Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Rd, Vicksburg, MS, 39180, USA.

出版信息

Comput Biol Med. 2021 Jan;128:104134. doi: 10.1016/j.compbiomed.2020.104134. Epub 2020 Nov 21.

Abstract

Elastin-like polypeptides (ELP) belong to a family of recombinant polymers that shows great promise as biocompatible drug delivery and tissue engineering materials. ELPs aggregate above a characteristic transition temperature (T). We have previously shown that the T and size of the resulting aggregates can be controlled by changing the ELP's solution environment (polymer concentration, salt concentration, and pH). When coupled to a synthetic polyelectrolyte, polyethyleneimine (PEI), ELP retains its T behavior and gains the ability to be crosslinked into defined particle sizes. This paper explores several machine learning models to predict the T and hydrodynamic radius (R) of ELP and two ELP-PEI polymers in varying solution conditions. An exhaustive design of experiments matrix consisting of 81 conditions of interest with varying salt concentration (0, 0.2, 1 M NaCl), pH (3, 7, 10), polymer concentration (0.1, 0.17, 0.3 mg/mL), and polymer type (ELP, ELP-PEI800, ELP-PEI10K) was investigated. The five models used in this study were multiple linear regression, elastic-net, support vector regression, multi-layer perceptron, and random forest. A multi-layer perceptron model was found to have the highest accuracy, with an R score of 0.97 for both R and T. This was followed closely by the random forest model, with an R of 0.94 for R and 0.95 for T. Feature importance was determined using the random forest and linear regression models. Both models showed that salt concentration and polymer type were the two most influential factors that determined R, while salt concentration was the dominant factor for T.

摘要

弹性蛋白样多肽(ELP)属于一类重组聚合物,作为生物相容性药物输送和组织工程材料具有很大的应用前景。ELP 在特征转变温度(T)以上聚集。我们之前已经表明,通过改变 ELP 的溶液环境(聚合物浓度、盐浓度和 pH 值)可以控制 T 和所得聚集体的大小。当与合成聚电解质聚乙烯亚胺(PEI)偶联时,ELP 保留其 T 行为并获得交联成特定粒径的能力。本文探索了几种机器学习模型来预测 ELP 和两种 ELP-PEI 聚合物在不同溶液条件下的 T 和流体力学半径(R)。一个详尽的实验设计矩阵由 81 个感兴趣的条件组成,这些条件的盐浓度(0、0.2、1 M NaCl)、pH 值(3、7、10)、聚合物浓度(0.1、0.17、0.3 mg/mL)和聚合物类型(ELP、ELP-PEI800、ELP-PEI10K)有所不同。本研究中使用了五种模型,分别是多元线性回归、弹性网、支持向量回归、多层感知机和随机森林。发现多层感知机模型具有最高的准确性,R 和 T 的 R 得分为 0.97。紧随其后的是随机森林模型,R 的 R 得分为 0.94,T 的 R 得分为 0.95。使用随机森林和线性回归模型确定了特征重要性。这两个模型都表明盐浓度和聚合物类型是决定 R 的两个最具影响力的因素,而盐浓度是 T 的主要因素。

相似文献

本文引用的文献

8
Elastin-like Polypeptide Diblock Copolymers Self-Assemble into Weak Micelles.类弹性蛋白多肽二嵌段共聚物自组装成弱胶束。
Macromolecules. 2015 Jun 23;48(12):4183-4195. doi: 10.1021/acs.macromol.5b00431. Epub 2015 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验