Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
College of Life Science, University of Chinese Academy of Sciences, Beijing, 100093, China.
Plant J. 2021 Feb;105(3):565-579. doi: 10.1111/tpj.15098. Epub 2020 Dec 26.
During the sexual reproduction of higher plants, DNA methylation and transcription are broadly changed to reshape a microspore into two sperm cells (SCs) and a vegetative cell (VC). However, when and how the DNA methylation of SCs is established remains not fully understood. Here we investigate the DNA methylation (5 mC) dynamics of SC lineage and the VC in tomato using whole-genome bisulfite sequencing. We find the asymmetric division of the microspore gives its two daughter cells differential methylome. Compared with the generative cell (GC), the VC is hypomethylated at CG sites while hypermethylated at CHG and CHH sites, with the majority of differentially methylation regions targeted to transposable elements (TEs). SCs have a nearly identical DNA methylome to the GC, suggesting that the methylation landscape in SCs may be pre-established following the asymmetric division or inherited from the GC. The random forest classifier for predicting gene and TE expression shows that methylation within the gene body is a more powerful predictor for gene expression. Among all tested samples, gene and TE expression in the microspore may be more predictable by DNA methylation. Our results depict an intact DNA methylome landscape of SC lineage in higher plants, and reveal that the impact of DNA methylation on transcription is variant in different cell types.
在高等植物的有性生殖过程中,DNA 甲基化和转录广泛改变,将小孢子重塑为两个精子细胞(SCs)和一个营养细胞(VC)。然而,SCs 的 DNA 甲基化是如何以及何时建立的仍不完全清楚。在这里,我们使用全基因组亚硫酸氢盐测序研究了番茄 SC 谱系和 VC 的 DNA 甲基化(5mC)动态。我们发现小孢子的不对称分裂使它的两个子细胞具有不同的甲基组。与生殖细胞(GC)相比,VC 在 CG 位点上的甲基化程度较低,而在 CHG 和 CHH 位点上的甲基化程度较高,大多数差异甲基化区域靶向转座元件(TEs)。SCs 与 GC 具有几乎相同的 DNA 甲基化组,这表明 SCs 中的甲基化景观可能是在不对称分裂后预先建立的,或者是从 GC 继承而来的。用于预测基因和 TE 表达的随机森林分类器表明,基因体内部的甲基化是基因表达的更有力预测因子。在所有测试的样本中,小孢子中的基因和 TE 表达可能通过 DNA 甲基化更可预测。我们的结果描绘了高等植物 SC 谱系完整的 DNA 甲基化组景观,并揭示了 DNA 甲基化对转录的影响在不同细胞类型中是不同的。