Suppr超能文献

基于优化互补总体经验模态分解和多尺度包络谱熵的肌肉疲劳分析

Muscle Fatigue Analysis With Optimized Complementary Ensemble Empirical Mode Decomposition and Multi-Scale Envelope Spectral Entropy.

作者信息

Zhao Juan, She Jinhua, Fukushima Edwardo F, Wang Dianhong, Wu Min, Pan Katherine

机构信息

School of Automation, China University of Geosciences, Wuhan, China.

Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan, China.

出版信息

Front Neurorobot. 2020 Nov 5;14:566172. doi: 10.3389/fnbot.2020.566172. eCollection 2020.

Abstract

The preprocessing of surface electromyography (sEMG) signals with complementary ensemble empirical mode decomposition (CEEMD) improves frequency identification precision and temporal resolution, and lays a good foundation for feature extraction. However, a mode-mixing problem often occurs when the CEEMD decomposes an sEMG signal that exhibits intermittency and contains components with a near-by spectrum into intrinsic mode functions (IMFs). This paper presents a method called optimized CEEMD (OCEEMD) to solve this problem. The method integrates the least-squares mutual information (LSMI) and the chaotic quantum particle swarm optimization (CQPSO) algorithm in signal decomposition. It uses the LSMI to calculate the correlation between IMFs so as to reduce mode mixing and uses the CQPSO to optimize the standard deviation of Gaussian white noise so as to improve iteration efficiency. Then, useful IMFs are selected and added to reconstruct a de-noised signal. Finally, considering that the IMFs contain abundant frequency and envelope information, this paper extracts the multi-scale envelope spectral entropy (MSESEn) from the reconstructed sEMG signal. Some original sEMG signals, which were collected from experiments, were used to validate the methods. Compared with the CEEMD and complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), the OCEEMD effectively suppresses mode mixing between IMFs with rapid iteration. Compared with approximate entropy (ApEn) and sample entropy (SampEn), the MSESEn clearly shows a declining tendency with time and is sensitive to muscle fatigue. This suggests a potential use of this approach for sEMG signal preprocessing and the analysis of muscle fatigue.

摘要

基于互补总体经验模态分解(CEEMD)的表面肌电信号(sEMG)预处理提高了频率识别精度和时间分辨率,为特征提取奠定了良好基础。然而,当CEEMD分解具有间歇性且包含频谱相近成分的sEMG信号为固有模态函数(IMF)时,常常会出现模态混叠问题。本文提出一种名为优化CEEMD(OCEEMD)的方法来解决这一问题。该方法在信号分解中集成了最小二乘互信息(LSMI)和混沌量子粒子群优化(CQPSO)算法。它利用LSMI计算IMF之间的相关性以减少模态混叠,并利用CQPSO优化高斯白噪声的标准差以提高迭代效率。然后,选择有用的IMF并将其相加来重构去噪信号。最后,考虑到IMF包含丰富的频率和包络信息,本文从重构的sEMG信号中提取多尺度包络谱熵(MSESEn)。利用实验采集的一些原始sEMG信号对这些方法进行验证。与CEEMD和自适应噪声总体经验模态分解(CEEMDAN)相比,OCEEMD能有效抑制IMF之间的模态混叠且迭代速度快。与近似熵(ApEn)和样本熵(SampEn)相比,MSESEn随时间明显呈下降趋势,且对肌肉疲劳敏感。这表明该方法在sEMG信号预处理和肌肉疲劳分析方面具有潜在应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3f3/7674835/74df0ffcc208/fnbot-14-566172-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验