Suppr超能文献

基于表面肌电信号的肩部和肘部运动学同步连续估计

Simultaneous and Continuous Estimation of Shoulder and Elbow Kinematics from Surface EMG Signals.

作者信息

Zhang Qin, Liu Runfeng, Chen Wenbin, Xiong Caihua

机构信息

The State Key Laboratory of Digital Manufacturing Equipment and Technology, Institute of Rehabilitation and Medical Robotics, Huazhong University of Science and TechnologyWuhan, China.

出版信息

Front Neurosci. 2017 May 30;11:280. doi: 10.3389/fnins.2017.00280. eCollection 2017.

Abstract

In this paper, we present a simultaneous and continuous kinematics estimation method for multiple DoFs across shoulder and elbow joint. Although simultaneous and continuous kinematics estimation from surface electromyography (EMG) is a feasible way to achieve natural and intuitive human-machine interaction, few works investigated multi-DoF estimation across the significant joints of upper limb, shoulder and elbow joints. This paper evaluates the feasibility to estimate 4-DoF kinematics at shoulder and elbow during coordinated arm movements. Considering the potential applications of this method in exoskeleton, prosthetics and other arm rehabilitation techniques, the estimation performance is presented with different muscle activity decomposition and learning strategies. Principle component analysis (PCA) and independent component analysis (ICA) are respectively employed for EMG mode decomposition with artificial neural network (ANN) for learning the electromechanical association. Four joint angles across shoulder and elbow are simultaneously and continuously estimated from EMG in four coordinated arm movements. By using ICA (PCA) and single ANN, the average estimation accuracy 91.12% (90.23%) is obtained in 70-s intra-cross validation and 87.00% (86.30%) is obtained in 2-min inter-cross validation. This result suggests it is feasible and effective to use ICA (PCA) with single ANN for multi-joint kinematics estimation in variant application conditions.

摘要

在本文中,我们提出了一种用于同时连续估计肩部和肘关节多个自由度运动学的方法。尽管从表面肌电图(EMG)进行同时连续运动学估计是实现自然直观人机交互的可行方法,但很少有研究探讨上肢重要关节(肩部和肘关节)的多自由度估计。本文评估了在手臂协调运动期间估计肩部和肘部4自由度运动学的可行性。考虑到该方法在外骨骼、假肢和其他手臂康复技术中的潜在应用,通过不同的肌肉活动分解和学习策略展示了估计性能。分别采用主成分分析(PCA)和独立成分分析(ICA)对肌电图模式进行分解,并使用人工神经网络(ANN)学习机电关联。在四种手臂协调运动中,通过肌电图同时连续估计肩部和肘部的四个关节角度。使用ICA(PCA)和单个人工神经网络,在70秒内交叉验证中平均估计准确率为91.12%(90.23%),在2分钟间交叉验证中平均估计准确率为87.00%(86.30%)。该结果表明,在不同应用条件下,使用ICA(PCA)和单个人工神经网络进行多关节运动学估计是可行且有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/739e/5447720/44df9a866cc8/fnins-11-00280-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验