Gao Jianbo, Hu Jing, Liu Feiyan, Cao Yinhe
Institute of Complexity Science and Big Data Technology, Guangxi University Nanning, China ; PMB Intelligence LLC Sunnyvale, CA, USA.
PMB Intelligence LLC Sunnyvale, CA, USA.
Front Comput Neurosci. 2015 Jun 2;9:64. doi: 10.3389/fncom.2015.00064. eCollection 2015.
Since introduced in early 2000, multiscale entropy (MSE) has found many applications in biosignal analysis, and been extended to multivariate MSE. So far, however, no analytic results for MSE or multivariate MSE have been reported. This has severely limited our basic understanding of MSE. For example, it has not been studied whether MSE estimated using default parameter values and short data set is meaningful or not. Nor is it known whether MSE has any relation with other complexity measures, such as the Hurst parameter, which characterizes the correlation structure of the data. To overcome this limitation, and more importantly, to guide more fruitful applications of MSE in various areas of life sciences, we derive a fundamental bi-scaling law for fractal time series, one for the scale in phase space, the other for the block size used for smoothing. We illustrate the usefulness of the approach by examining two types of physiological data. One is heart rate variability (HRV) data, for the purpose of distinguishing healthy subjects from patients with congestive heart failure, a life-threatening condition. The other is electroencephalogram (EEG) data, for the purpose of distinguishing epileptic seizure EEG from normal healthy EEG.
自2000年初被引入以来,多尺度熵(MSE)在生物信号分析中得到了广泛应用,并被扩展到多变量MSE。然而,到目前为止,尚未有关于MSE或多变量MSE的解析结果报道。这严重限制了我们对MSE的基本理解。例如,尚未研究使用默认参数值和短数据集估计的MSE是否有意义。也不清楚MSE与其他复杂性度量(如表征数据相关结构的赫斯特参数)是否有关系。为了克服这一限制,更重要的是,为了指导MSE在生命科学各个领域更富有成效的应用,我们推导了分形时间序列的一个基本双标度律,一个用于相空间中的尺度,另一个用于用于平滑的块大小。我们通过检查两种类型的生理数据来说明该方法的有用性。一种是心率变异性(HRV)数据,用于区分健康受试者和充血性心力衰竭患者,这是一种危及生命的疾病。另一种是脑电图(EEG)数据,用于区分癫痫发作脑电图和正常健康脑电图。