Suppr超能文献

基于患者血清拉曼光谱的高精度结直肠癌预测模型。

Highly accurate colorectal cancer prediction model based on Raman spectroscopy using patient serum.

作者信息

Ito Hiroaki, Uragami Naoyuki, Miyazaki Tomokazu, Yang William, Issha Kenji, Matsuo Kai, Kimura Satoshi, Arai Yuji, Tokunaga Hiromasa, Okada Saiko, Kawamura Machiko, Yokoyama Noboru, Kushima Miki, Inoue Haruhiro, Fukagai Takashi, Kamijo Yumi

机构信息

Digestive Disease Center, Showa University Koto Toyosu Hospital, Tokyo 135-8577, Japan.

Research Division, JSR Corporation, Tokyo 105-0021, Japan.

出版信息

World J Gastrointest Oncol. 2020 Nov 15;12(11):1311-1324. doi: 10.4251/wjgo.v12.i11.1311.

Abstract

BACKGROUND

Colorectal cancer (CRC) is an important disease worldwide, accounting for the second highest number of cancer-related deaths and the third highest number of new cancer cases. The blood test is a simple and minimally invasive diagnostic test. However, there is currently no blood test that can accurately diagnose CRC.

AIM

To develop a comprehensive, spontaneous, minimally invasive, label-free, blood-based CRC screening technique based on Raman spectroscopy.

METHODS

We used Raman spectra recorded using 184 serum samples obtained from patients undergoing colonoscopies. Patients with malignant tumor histories as well as those with cancers in organs other than the large intestine were excluded. Consequently, the specific diseases of 184 patients were CRC (12), rectal neuroendocrine tumor (2), colorectal adenoma (68), colorectal hyperplastic polyp (18), and others (84). We used the 1064-nm wavelength laser for excitation. The power of the laser was set to 200 mW.

RESULTS

Use of the recorded Raman spectra as training data allowed the construction of a boosted tree CRC prediction model based on machine learning. Therefore, the generalized values for CRC, adenomas, hyperplastic polyps, and neuroendocrine tumors were 0.9982, 0.9630, 0.9962, and 0.9986, respectively.

CONCLUSION

For machine learning using Raman spectral data, a highly accurate CRC prediction model with a high value was constructed. We are currently planning studies to demonstrate the accuracy of this model with a large amount of additional data.

摘要

背景

结直肠癌(CRC)是全球范围内的一种重要疾病,在癌症相关死亡人数中排名第二,在新增癌症病例数中排名第三。血液检测是一种简单且微创的诊断检测方法。然而,目前尚无能够准确诊断结直肠癌的血液检测方法。

目的

基于拉曼光谱开发一种全面、自发、微创、无标记的血液结直肠癌筛查技术。

方法

我们使用了从接受结肠镜检查的患者获取的184份血清样本记录的拉曼光谱。排除有恶性肿瘤病史以及大肠以外器官患有癌症的患者。因此,184名患者的具体疾病为结直肠癌(12例)、直肠神经内分泌肿瘤(2例)、大肠腺瘤(68例)、大肠增生性息肉(18例)以及其他(84例)。我们使用1064纳米波长的激光进行激发。激光功率设置为200毫瓦。

结果

将记录的拉曼光谱用作训练数据,使得基于机器学习构建了一个增强树结直肠癌预测模型。因此,结直肠癌、腺瘤、增生性息肉和神经内分泌肿瘤的广义值分别为0.9982、0.9630、0.9962和0.9986。

结论

对于使用拉曼光谱数据的机器学习,构建了一个具有高值的高精度结直肠癌预测模型。我们目前正在计划开展研究,以用大量额外数据证明该模型的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eeb/7667458/f5134d62b196/WJGO-12-1311-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验