Suppr超能文献

人工智能与机器学习在胃肠胰神经内分泌肿瘤诊断与管理中的应用——一项范围综述

Artificial Intelligence and Machine Learning in the Diagnosis and Management of Gastroenteropancreatic Neuroendocrine Neoplasms-A Scoping Review.

作者信息

Pantelis Athanasios G, Panagopoulou Panagiota A, Lapatsanis Dimitris P

机构信息

4th Department of Surgery, Evaggelismos General Hospital of Athens, 10676 Athens, Greece.

Protypo Dialysis Center of Piraeus, 18233 Piraeus, Greece.

出版信息

Diagnostics (Basel). 2022 Mar 31;12(4):874. doi: 10.3390/diagnostics12040874.

Abstract

Neuroendocrine neoplasms (NENs) and tumors (NETs) are rare neoplasms that may affect any part of the gastrointestinal system. In this scoping review, we attempt to map existing evidence on the role of artificial intelligence, machine learning and deep learning in the diagnosis and management of NENs of the gastrointestinal system. After implementation of inclusion and exclusion criteria, we retrieved 44 studies with 53 outcome analyses. We then classified the papers according to the type of studied NET (26 Pan-NETs, 59.1%; 3 metastatic liver NETs (6.8%), 2 small intestinal NETs, 4.5%; colorectal, rectal, non-specified gastroenteropancreatic and non-specified gastrointestinal NETs had from 1 study each, 2.3%). The most frequently used AI algorithms were Supporting Vector Classification/Machine (14 analyses, 29.8%), Convolutional Neural Network and Random Forest (10 analyses each, 21.3%), Random Forest (9 analyses, 19.1%), Logistic Regression (8 analyses, 17.0%), and Decision Tree (6 analyses, 12.8%). There was high heterogeneity on the description of the prediction model, structure of datasets, and performance metrics, whereas the majority of studies did not report any external validation set. Future studies should aim at incorporating a uniform structure in accordance with existing guidelines for purposes of reproducibility and research quality, which are prerequisites for integration into clinical practice.

摘要

神经内分泌肿瘤(NENs)和神经内分泌瘤(NETs)是罕见肿瘤,可累及胃肠系统的任何部位。在本综述中,我们试图梳理关于人工智能、机器学习和深度学习在胃肠系统神经内分泌肿瘤诊断和管理中作用的现有证据。在实施纳入和排除标准后,我们检索到44项研究,包含53项结果分析。然后,我们根据所研究的神经内分泌瘤类型对论文进行分类(26项胰腺神经内分泌瘤,占59.1%;3项转移性肝神经内分泌瘤,占6.8%;2项小肠神经内分泌瘤,占4.5%;结直肠、直肠、未明确的胃肠胰和未明确的胃肠道神经内分泌瘤各有1项研究,占2.3%)。最常用的人工智能算法是支持向量分类/机(14项分析,占29.8%)、卷积神经网络和随机森林(各10项分析,占21.3%)、随机森林(9项分析,占19.1%)、逻辑回归(8项分析,占17.0%)和决策树(6项分析,占12.8%)。在预测模型描述、数据集结构和性能指标方面存在高度异质性,而大多数研究未报告任何外部验证集。未来的研究应旨在根据现有指南采用统一结构,以实现可重复性和研究质量,这是整合到临床实践中的先决条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9659/9027316/a577716f2891/diagnostics-12-00874-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验