癌症中ATP合成的起源
On the Origin of ATP Synthesis in Cancer.
作者信息
Seyfried Thomas N, Arismendi-Morillo Gabriel, Mukherjee Purna, Chinopoulos Christos
机构信息
Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.
Electron Microscopy Laboratory, Biological Researches Institute, Faculty of Medicine, University of Zulia, Maracaibo, Venezuela.
出版信息
iScience. 2020 Nov 2;23(11):101761. doi: 10.1016/j.isci.2020.101761. eCollection 2020 Nov 20.
ATP is required for mammalian cells to remain viable and to perform genetically programmed functions. Maintenance of the ΔG' hydrolysis of -56 kJ/mole is the endpoint of both genetic and metabolic processes required for life. Various anomalies in mitochondrial structure and function prevent maximal ATP synthesis through OxPhos in cancer cells. Little ATP synthesis would occur through glycolysis in cancer cells that express the dimeric form of pyruvate kinase M2. Mitochondrial substrate level phosphorylation (mSLP) in the glutamine-driven glutaminolysis pathway, substantiated by the succinate-CoA ligase reaction in the TCA cycle, can partially compensate for reduced ATP synthesis through both OxPhos and glycolysis. A protracted insufficiency of OxPhos coupled with elevated glycolysis and an auxiliary, fully operational mSLP, would cause a cell to enter its default state of unbridled proliferation with consequent dedifferentiation and apoptotic resistance, i.e., cancer. The simultaneous restriction of glucose and glutamine offers a therapeutic strategy for managing cancer.
哺乳动物细胞要保持存活并执行基因编程功能需要ATP。维持-56 kJ/摩尔的ΔG'水解是生命所需的遗传和代谢过程的终点。线粒体结构和功能的各种异常会阻碍癌细胞通过氧化磷酸化进行最大程度的ATP合成。在表达二聚体形式丙酮酸激酶M2的癌细胞中,糖酵解产生的ATP很少。谷氨酰胺驱动的谷氨酰胺分解途径中的线粒体底物水平磷酸化(mSLP),由三羧酸循环中的琥珀酸-CoA连接酶反应证实,可以部分补偿氧化磷酸化和糖酵解减少导致的ATP合成减少。氧化磷酸化的长期不足,加上糖酵解增加和辅助性的、完全运作的mSLP,会导致细胞进入不受控制的增殖的默认状态,随之而来的是去分化和抗凋亡,即癌症。同时限制葡萄糖和谷氨酰胺为治疗癌症提供了一种策略。