Suppr超能文献

源自葡萄糖代谢途径的氧化还原状态稳态可能是理解瓦伯格效应的关键。

Homeostasis of redox status derived from glucose metabolic pathway could be the key to understanding the Warburg effect.

作者信息

Zhang Shiwu, Yang Chuanwei, Yang Zhenduo, Zhang Dan, Ma Xiaoping, Mills Gordon, Liu Zesheng

机构信息

Department of Pathology, Tianjin Union Medical Center Tianjin, People's Republic of China.

Department of Systems Biology, The University of Texas MD Anderson Cancer Center Houston, TX, 77030, USA ; Breast Medical Oncology, The University of Texas MD Anderson Cancer Center Houston, TX, 77030, USA.

出版信息

Am J Cancer Res. 2015 Mar 15;5(4):1265-80. eCollection 2015.

Abstract

Glucose metabolism in mitochondria through oxidative phosphorylation (OXPHOS) for generation of adenosine triphosphate (ATP) is vital for cell function. However, reactive oxygen species (ROS), a by-product from OXPHOS, is a major source of endogenously produced toxic stressors on the genome. In fact, ATP could be efficiently produced in a high throughput manner without ROS generation in cytosol through glycolysis, which could be a unique and critical metabolic pathway to prevent spontaneous mutation during DNA replication. Therefore glycolysis is dominant in robust proliferating cells. Indeed, aerobic glycolysis, or the Warburg effect, in normal proliferating cells is an example of homeostasis of redox status by transiently shifting metabolic flux from OXPHOS to glycolysis to avoid ROS generation during DNA synthesis and protect genome integrity. The process of maintaining redox homeostasis is driven by genome wide transcriptional clustering with mitochondrial retrograde signaling and coupled with the glucose metabolic pathway and cell division cycle. On the contrary, the Warburg effect in cancer cells is the results of the alteration of redox status from a reprogramed glucose metabolic pathway caused by the dysfunctional OXPHOS. Mutations in mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) disrupt mitochondrial structural integrity, leading to reduced OXPHOS capacity, sustained glycolysis and excessive ROS leak, all of which are responsible for tumor initiation, progression and metastasis. A "plumbing model" is used to illustrate how redox status could be regulated through glucose metabolic pathway and provide a new insight into the understanding of the Warburg effect in both normal and cancer cells.

摘要

线粒体中通过氧化磷酸化(OXPHOS)进行葡萄糖代谢以生成三磷酸腺苷(ATP)对细胞功能至关重要。然而,OXPHOS的副产物活性氧(ROS)是基因组内源性产生的毒性应激源的主要来源。事实上,通过糖酵解可在细胞质中以高通量方式高效产生ATP而不产生ROS,这可能是在DNA复制过程中防止自发突变的独特且关键的代谢途径。因此,糖酵解在旺盛增殖的细胞中占主导地位。确实,正常增殖细胞中的有氧糖酵解或瓦伯格效应是通过将代谢通量从OXPHOS暂时转移到糖酵解来避免DNA合成过程中ROS产生并保护基因组完整性,从而实现氧化还原状态稳态的一个例子。维持氧化还原稳态的过程由全基因组转录聚类驱动,伴随着线粒体逆行信号传导,并与葡萄糖代谢途径和细胞分裂周期相关联。相反,癌细胞中的瓦伯格效应是由功能失调的OXPHOS导致的重新编程的葡萄糖代谢途径引起的氧化还原状态改变的结果。线粒体DNA(mtDNA)和核DNA(nDNA)中的突变破坏线粒体结构完整性,导致OXPHOS能力降低、糖酵解持续以及ROS过度泄漏,所有这些都与肿瘤的起始、进展和转移有关。一个“管道模型”被用来阐明氧化还原状态如何通过葡萄糖代谢途径进行调节,并为理解正常细胞和癌细胞中的瓦伯格效应提供新的见解。

相似文献

7
The Warburg effect: evolving interpretations of an established concept.瓦伯格效应:对一个既定概念不断演变的解读
Free Radic Biol Med. 2015 Feb;79:253-63. doi: 10.1016/j.freeradbiomed.2014.08.027. Epub 2014 Sep 30.
9
Mitochondria and cancer: Warburg addressed.线粒体与癌症:对瓦伯格效应的探讨
Cold Spring Harb Symp Quant Biol. 2005;70:363-74. doi: 10.1101/sqb.2005.70.035.

引用本文的文献

2
Mitochondria and chronic effects of cancer therapeutics: The clinical implications.线粒体与癌症治疗的慢性效应:临床意义。
J Thromb Thrombolysis. 2021 May;51(4):884-889. doi: 10.1007/s11239-020-02313-2. Epub 2020 Oct 20.
6
Exon 3 mutations of drive tumorigenesis: a review.驱动肿瘤发生的外显子3突变:综述
Oncotarget. 2017 Nov 24;9(4):5492-5508. doi: 10.18632/oncotarget.23695. eCollection 2018 Jan 12.

本文引用的文献

6
Mitochondrial ion channels as oncological targets.线粒体离子通道作为肿瘤治疗靶点
Oncogene. 2014 Dec 4;33(49):5569-81. doi: 10.1038/onc.2013.578. Epub 2014 Jan 27.
7
Role of mitochondria in parvovirus pathology.线粒体在细小病毒病理学中的作用。
PLoS One. 2014 Jan 21;9(1):e86124. doi: 10.1371/journal.pone.0086124. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验