Wu Tianhao, Liu Xiang, Zhang Xu, Lu Yue, Wang Boya, Deng Qingsong, Yang Yubo, Wang Errui, Lyu Zhongtian, Li Yaoqian, Wang Yongtao, Lyu Yan, He Cunfu, Ren Yang, Xu Guiliang, Sun Xueliang, Amine Khalil, Yu Haijun
Faculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing, 100124, P. R. China.
Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA.
Adv Mater. 2021 Jan;33(2):e2001358. doi: 10.1002/adma.202001358. Epub 2020 Nov 30.
Lithium-rich layered oxides (LLOs) are prospective cathode materials for next-generation lithium-ion batteries (LIBs), but severe voltage decay and energy attenuation with cycling still hinder their practical applications. Herein, a series of full concentration gradient-tailored agglomerated-sphere LLOs are designed with linearly decreasing Mn and linearly increasing Ni and Co from the particle center to the surface. The gradient-tailored LLOs exhibit noticeably reduced voltage decay, enhanced rate performance, improved cycle stability, and thermal stability. Without any material modifications or electrolyte optimizations, the gradient-tailored LLO with medium-slope shows the best electrochemical performance, with a very low average voltage decay of 0.8 mV per cycle as well as a capacity retention of 88.4% within 200 cycles at 200 mA g . These excellent findings are due to spinel structure suppression, electrochemical stress optimization, and Jahn-Teller effect inhibition. Further investigation shows that the gradient-tailored LLO reduces the thermal release percentage by as much as about 41% when the battery is charged to 4.4 V. This study provides an effective method to suppress the voltage decay of LLOs for further practical utilization in LIBs and also puts forward a bulk-structure design strategy to prepare better electrode materials for different rechargeable batteries.
富锂层状氧化物(LLOs)是下一代锂离子电池(LIBs)的潜在正极材料,但循环过程中严重的电压衰减和能量衰减仍然阻碍了它们的实际应用。在此,设计了一系列全浓度梯度定制的团聚球形LLOs,从颗粒中心到表面,锰呈线性递减,镍和钴呈线性递增。梯度定制的LLOs表现出明显降低的电压衰减、增强的倍率性能、改善的循环稳定性和热稳定性。在没有任何材料改性或电解质优化的情况下,中等斜率的梯度定制LLOs表现出最佳的电化学性能,平均每循环电压衰减非常低,仅为0.8 mV,在200 mA g 的电流密度下200次循环内容量保持率为88.4%。这些优异的结果归因于尖晶石结构抑制、电化学应力优化和 Jahn-Teller 效应抑制。进一步研究表明,当电池充电至4.4 V时,梯度定制的LLOs将热释放百分比降低了约41%。本研究提供了一种抑制LLOs电压衰减以进一步在LIBs中实际应用的有效方法,还提出了一种本体结构设计策略,以制备用于不同可充电电池的更好电极材料。