Suppr超能文献

镍/镁双浓度梯度表面改性以增强富锂层状氧化物的结构稳定性和电化学性能

Ni/Mg Dual Concentration-Gradient Surface Modification to Enhance Structural Stability and Electrochemical Performance of Li-Rich Layered Oxides.

作者信息

Cong Guanghui, Huang Lujun, Yang Guobo, Song Jinpeng, Liu Shaoshuai, Huang Yating, Zhang Xin, Liu Zheyuan, Geng Lin

机构信息

School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2024 Feb 28;16(8):9999-10008. doi: 10.1021/acsami.3c15115. Epub 2024 Feb 15.

Abstract

Li-rich layered oxides (LRLOs), with the advantages of high specific capacity and low cost, are considered as candidates for the next-generation cathode of lithium-ion batteries (LIBs). Unfortunately, sluggish kinetics and interfacial degradation lead to capacity loss and voltage decay of the material during cycling. To address these issues, we propose a Ni/Mg dual concentration-gradient modification strategy for LRLOs. From the center to the surface of the modified materials, the contents of Ni and Mg are gradually increased while the content of Mn is decreased. The high Ni content on the surface increases the proportion of cationic redox, elevating the operating voltage and accelerating reaction kinetics. Moreover, the doped Mg on the surface of the material acting as a stabilizing pillar suppresses the migration of transition metals, stabilizing the layered structure. Therefore, the material with the Ni/Mg dual concentration-gradients delivers a superior electrochemical performance, exhibiting a suppressed voltage decay of 2.8 mV per cycle during 200 cycles (1 C, 2-4.8 V) and an excellent rate capability of 94.84 mAh/g at 7C. This study demonstrates a synergic design to construct high-performance LRLO cathode materials for LIBs.

摘要

富锂层状氧化物(LRLOs)具有高比容量和低成本的优点,被认为是下一代锂离子电池(LIBs)正极材料的候选者。不幸的是,缓慢的动力学和界面降解导致材料在循环过程中容量损失和电压衰减。为了解决这些问题,我们提出了一种用于LRLOs的镍/镁双浓度梯度改性策略。从改性材料的中心到表面,镍和镁的含量逐渐增加,而锰的含量则降低。表面高镍含量增加了阳离子氧化还原的比例,提高了工作电压并加速了反应动力学。此外,材料表面掺杂的镁作为稳定支柱抑制了过渡金属的迁移,稳定了层状结构。因此,具有镍/镁双浓度梯度的材料具有优异的电化学性能,在200次循环(1C,2-4.8V)中表现出每循环2.8mV的抑制电压衰减,在7C时具有94.84mAh/g的优异倍率性能。本研究展示了一种协同设计,用于构建高性能的LIBs正极材料。

相似文献

1
Ni/Mg Dual Concentration-Gradient Surface Modification to Enhance Structural Stability and Electrochemical Performance of Li-Rich Layered Oxides.
ACS Appl Mater Interfaces. 2024 Feb 28;16(8):9999-10008. doi: 10.1021/acsami.3c15115. Epub 2024 Feb 15.
2
Full Concentration Gradient-Tailored Li-Rich Layered Oxides for High-Energy Lithium-Ion Batteries.
Adv Mater. 2021 Jan;33(2):e2001358. doi: 10.1002/adma.202001358. Epub 2020 Nov 30.
3
Ni/Li Disordering in Layered Transition Metal Oxide: Electrochemical Impact, Origin, and Control.
Acc Chem Res. 2019 Aug 20;52(8):2201-2209. doi: 10.1021/acs.accounts.9b00033. Epub 2019 Jun 10.
4
Dual-modification of Ni-rich cathode materials through strontium titanate coating and thermal treatment.
J Colloid Interface Sci. 2023 Dec 15;652(Pt B):1184-1196. doi: 10.1016/j.jcis.2023.08.101. Epub 2023 Aug 17.
5
Enhancing the Electrochemical Performance and Structural Stability of Ni-Rich Layered Cathode Materials via Dual-Site Doping.
ACS Appl Mater Interfaces. 2021 May 5;13(17):19950-19958. doi: 10.1021/acsami.1c00755. Epub 2021 Apr 23.
6
Semi-Metallic Superionic Layers Suppressing Voltage Fading of Li-Rich Layered Oxide Towards Superior-Stable Li-Ion Batteries.
Angew Chem Int Ed Engl. 2023 Sep 11;62(37):e202309049. doi: 10.1002/anie.202309049. Epub 2023 Aug 7.
8
Surface Gradient Ni-Rich Cathode for Li-Ion Batteries.
Adv Mater. 2024 Aug;36(33):e2401052. doi: 10.1002/adma.202401052. Epub 2024 Jul 5.
9
Improving the Structure and Cycling Stability of Ni-Rich Layered Cathodes by Dual Modification of Yttrium Doping and Surface Coating.
ACS Appl Mater Interfaces. 2020 Apr 29;12(17):19483-19494. doi: 10.1021/acsami.0c01558. Epub 2020 Apr 15.

引用本文的文献

1
Modification Strategies of High-Energy Li-Rich Mn-Based Cathodes for Li-Ion Batteries: A Review.
Molecules. 2024 Feb 29;29(5):1064. doi: 10.3390/molecules29051064.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验