Cong Guanghui, Huang Lujun, Yang Guobo, Song Jinpeng, Liu Shaoshuai, Huang Yating, Zhang Xin, Liu Zheyuan, Geng Lin
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
ACS Appl Mater Interfaces. 2024 Feb 28;16(8):9999-10008. doi: 10.1021/acsami.3c15115. Epub 2024 Feb 15.
Li-rich layered oxides (LRLOs), with the advantages of high specific capacity and low cost, are considered as candidates for the next-generation cathode of lithium-ion batteries (LIBs). Unfortunately, sluggish kinetics and interfacial degradation lead to capacity loss and voltage decay of the material during cycling. To address these issues, we propose a Ni/Mg dual concentration-gradient modification strategy for LRLOs. From the center to the surface of the modified materials, the contents of Ni and Mg are gradually increased while the content of Mn is decreased. The high Ni content on the surface increases the proportion of cationic redox, elevating the operating voltage and accelerating reaction kinetics. Moreover, the doped Mg on the surface of the material acting as a stabilizing pillar suppresses the migration of transition metals, stabilizing the layered structure. Therefore, the material with the Ni/Mg dual concentration-gradients delivers a superior electrochemical performance, exhibiting a suppressed voltage decay of 2.8 mV per cycle during 200 cycles (1 C, 2-4.8 V) and an excellent rate capability of 94.84 mAh/g at 7C. This study demonstrates a synergic design to construct high-performance LRLO cathode materials for LIBs.
富锂层状氧化物(LRLOs)具有高比容量和低成本的优点,被认为是下一代锂离子电池(LIBs)正极材料的候选者。不幸的是,缓慢的动力学和界面降解导致材料在循环过程中容量损失和电压衰减。为了解决这些问题,我们提出了一种用于LRLOs的镍/镁双浓度梯度改性策略。从改性材料的中心到表面,镍和镁的含量逐渐增加,而锰的含量则降低。表面高镍含量增加了阳离子氧化还原的比例,提高了工作电压并加速了反应动力学。此外,材料表面掺杂的镁作为稳定支柱抑制了过渡金属的迁移,稳定了层状结构。因此,具有镍/镁双浓度梯度的材料具有优异的电化学性能,在200次循环(1C,2-4.8V)中表现出每循环2.8mV的抑制电压衰减,在7C时具有94.84mAh/g的优异倍率性能。本研究展示了一种协同设计,用于构建高性能的LIBs正极材料。