School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada.
Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
J Alzheimers Dis. 2021;79(1):47-58. doi: 10.3233/JAD-200830.
In recent years, many convolutional neural networks (CNN) have been proposed for the classification of Alzheimer's disease. Due to memory constraints, many of the proposed CNNs work at a 2D slice-level or 3D patch-level.
Here, we propose a subject-level 3D CNN that can extract the neurodegenerative patterns of the whole brain MRI and converted into a probabilistic Dementia score.
We propose an efficient and lightweight subject-level 3D CNN featuring dilated convolutions. We trained our network on the ADNI data on stable Dementia of the Alzheimer's type (sDAT) from stable normal controls (sNC). To comprehensively evaluate the generalizability of our proposed network, we performed four independent tests which includes testing on images from other ADNI individuals at various stages of the dementia, images acquired from other sites (AIBL), images acquired using different protocols (OASIS), and longitudinal images acquired over a short period of time (MIRIAD).
We achieved a 5-fold cross-validated balanced accuracy of 88%in differentiating sDAT from sNC, and an overall specificity of 79.5%and sensitivity 79.7%on the entire set of 7,902 independent test images.
Independent testing is essential for estimating the generalization ability of the network to unseen data, but is often lacking in studies using CNN for DAT classification. This makes it difficult to compare the performances achieved using different architectures. Our comprehensive evaluation highlighting the competitive performance of our network and potential promise for generalization.
近年来,许多卷积神经网络(CNN)被提出用于阿尔茨海默病的分类。由于内存限制,许多提出的 CNN 工作在 2D 切片级别或 3D 补丁级别。
在这里,我们提出了一种基于主体的 3D CNN,可以提取整个大脑 MRI 的神经退行性模式,并将其转换为概率性痴呆评分。
我们提出了一种高效的轻量级主体级 3D CNN,其特点是扩张卷积。我们在 ADNI 数据上对稳定的阿尔茨海默病型痴呆(sDAT)进行了网络训练,来自稳定的正常对照(sNC)。为了全面评估我们提出的网络的泛化能力,我们进行了四项独立测试,包括对来自不同痴呆阶段的其他 ADNI 个体的图像、来自其他站点(AIBL)的图像、使用不同协议(OASIS)获得的图像以及在短时间内获得的纵向图像进行测试。
我们在区分 sDAT 和 sNC 时实现了 5 倍交叉验证的平衡准确率为 88%,在整个 7902 个独立测试图像集上的总体特异性为 79.5%,敏感性为 79.7%。
独立测试对于估计网络对未见数据的泛化能力至关重要,但在使用 CNN 进行 DAT 分类的研究中通常缺乏独立测试。这使得比较使用不同架构获得的性能变得困难。我们的综合评估突出了我们网络的竞争性能和潜在的推广潜力。