Suppr超能文献

基于高效 3D 卷积神经网络的 MRI 阿尔茨海默病评分构建:多中心数据集 7902 张图像的综合验证。

Construction of MRI-Based Alzheimer's Disease Score Based on Efficient 3D Convolutional Neural Network: Comprehensive Validation on 7,902 Images from a Multi-Center Dataset.

机构信息

School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada.

Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.

出版信息

J Alzheimers Dis. 2021;79(1):47-58. doi: 10.3233/JAD-200830.

Abstract

BACKGROUND

In recent years, many convolutional neural networks (CNN) have been proposed for the classification of Alzheimer's disease. Due to memory constraints, many of the proposed CNNs work at a 2D slice-level or 3D patch-level.

OBJECTIVE

Here, we propose a subject-level 3D CNN that can extract the neurodegenerative patterns of the whole brain MRI and converted into a probabilistic Dementia score.

METHODS

We propose an efficient and lightweight subject-level 3D CNN featuring dilated convolutions. We trained our network on the ADNI data on stable Dementia of the Alzheimer's type (sDAT) from stable normal controls (sNC). To comprehensively evaluate the generalizability of our proposed network, we performed four independent tests which includes testing on images from other ADNI individuals at various stages of the dementia, images acquired from other sites (AIBL), images acquired using different protocols (OASIS), and longitudinal images acquired over a short period of time (MIRIAD).

RESULTS

We achieved a 5-fold cross-validated balanced accuracy of 88%in differentiating sDAT from sNC, and an overall specificity of 79.5%and sensitivity 79.7%on the entire set of 7,902 independent test images.

CONCLUSION

Independent testing is essential for estimating the generalization ability of the network to unseen data, but is often lacking in studies using CNN for DAT classification. This makes it difficult to compare the performances achieved using different architectures. Our comprehensive evaluation highlighting the competitive performance of our network and potential promise for generalization.

摘要

背景

近年来,许多卷积神经网络(CNN)被提出用于阿尔茨海默病的分类。由于内存限制,许多提出的 CNN 工作在 2D 切片级别或 3D 补丁级别。

目的

在这里,我们提出了一种基于主体的 3D CNN,可以提取整个大脑 MRI 的神经退行性模式,并将其转换为概率性痴呆评分。

方法

我们提出了一种高效的轻量级主体级 3D CNN,其特点是扩张卷积。我们在 ADNI 数据上对稳定的阿尔茨海默病型痴呆(sDAT)进行了网络训练,来自稳定的正常对照(sNC)。为了全面评估我们提出的网络的泛化能力,我们进行了四项独立测试,包括对来自不同痴呆阶段的其他 ADNI 个体的图像、来自其他站点(AIBL)的图像、使用不同协议(OASIS)获得的图像以及在短时间内获得的纵向图像进行测试。

结果

我们在区分 sDAT 和 sNC 时实现了 5 倍交叉验证的平衡准确率为 88%,在整个 7902 个独立测试图像集上的总体特异性为 79.5%,敏感性为 79.7%。

结论

独立测试对于估计网络对未见数据的泛化能力至关重要,但在使用 CNN 进行 DAT 分类的研究中通常缺乏独立测试。这使得比较使用不同架构获得的性能变得困难。我们的综合评估突出了我们网络的竞争性能和潜在的推广潜力。

相似文献

3
Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation.
Med Image Anal. 2020 Jul;63:101694. doi: 10.1016/j.media.2020.101694. Epub 2020 May 1.
6
Deep transfer learning-based fully automated detection and classification of Alzheimer's disease on brain MRI.
Br J Radiol. 2022 Aug 1;95(1136):20211253. doi: 10.1259/bjr.20211253. Epub 2022 Jun 9.
7
Monte Carlo Ensemble Neural Network for the diagnosis of Alzheimer's disease.
Neural Netw. 2023 Feb;159:14-24. doi: 10.1016/j.neunet.2022.10.032. Epub 2022 Nov 24.
8
Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process.
Int J Neural Syst. 2020 Jun;30(6):2050032. doi: 10.1142/S012906572050032X.
9
Quantifying brain metabolism from FDG-PET images into a probability of Alzheimer's dementia score.
Hum Brain Mapp. 2020 Jan;41(1):5-16. doi: 10.1002/hbm.24783. Epub 2019 Sep 10.
10
Effect of data leakage in brain MRI classification using 2D convolutional neural networks.
Sci Rep. 2021 Nov 19;11(1):22544. doi: 10.1038/s41598-021-01681-w.

引用本文的文献

2
Histogram-based features track Alzheimer's progression in brain MRI.
Sci Rep. 2024 Jan 2;14(1):257. doi: 10.1038/s41598-023-50631-1.
4
Predicting time-to-conversion for dementia of Alzheimer's type using multi-modal deep survival analysis.
Neurobiol Aging. 2023 Jan;121:139-156. doi: 10.1016/j.neurobiolaging.2022.10.005. Epub 2022 Oct 17.
6
A new classification network for diagnosing Alzheimer's disease in class-imbalance MRI datasets.
Front Neurosci. 2022 Aug 25;16:807085. doi: 10.3389/fnins.2022.807085. eCollection 2022.
7
Early diagnosis of Alzheimer's disease on ADNI data using novel longitudinal score based on functional principal component analysis.
J Med Imaging (Bellingham). 2021 Mar;8(2):024502. doi: 10.1117/1.JMI.8.2.024502. Epub 2021 Apr 21.

本文引用的文献

3
Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation.
Med Image Anal. 2020 Jul;63:101694. doi: 10.1016/j.media.2020.101694. Epub 2020 May 1.
4
Quantifying brain metabolism from FDG-PET images into a probability of Alzheimer's dementia score.
Hum Brain Mapp. 2020 Jan;41(1):5-16. doi: 10.1002/hbm.24783. Epub 2019 Sep 10.
5
Hierarchical Fully Convolutional Network for Joint Atrophy Localization and Alzheimer's Disease Diagnosis Using Structural MRI.
IEEE Trans Pattern Anal Mach Intell. 2020 Apr;42(4):880-893. doi: 10.1109/TPAMI.2018.2889096. Epub 2018 Dec 21.
7
Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: A systematic review.
Alzheimers Dement (Amst). 2018 Aug 11;10:519-535. doi: 10.1016/j.dadm.2018.07.004. eCollection 2018.
8
Alzheimer's disease diagnosis based on multiple cluster dense convolutional networks.
Comput Med Imaging Graph. 2018 Dec;70:101-110. doi: 10.1016/j.compmedimag.2018.09.009. Epub 2018 Oct 2.
9
Joint Classification and Regression via Deep Multi-Task Multi-Channel Learning for Alzheimer's Disease Diagnosis.
IEEE Trans Biomed Eng. 2019 May;66(5):1195-1206. doi: 10.1109/TBME.2018.2869989. Epub 2018 Sep 12.
10
Development and validation of a novel dementia of Alzheimer's type (DAT) score based on metabolism FDG-PET imaging.
Neuroimage Clin. 2018 Mar 10;18:802-813. doi: 10.1016/j.nicl.2018.03.007. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验