Lyu Yang-Yang, Ma Xiaoyu, Xu Jing, Wang Yong-Lei, Xiao Zhi-Li, Dong Sining, Janko Boldizsar, Wang Huabing, Divan Ralu, Pearson John E, Wu Peiheng, Kwok Wai-Kwong
Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China.
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States.
Nano Lett. 2020 Dec 9;20(12):8933-8939. doi: 10.1021/acs.nanolett.0c04093. Epub 2020 Nov 30.
The ability to control the potential landscape in a medium of interacting particles could lead to intriguing collective behavior and innovative functionalities. Here, we utilize spatially reconfigurable magnetic potentials of a pinwheel artificial-spin-ice (ASI) structure to tailor the motion of superconducting vortices. The reconstituted chain structures of the magnetic charges in the pinwheel ASI and the strong interaction between magnetic charges and superconducting vortices allow significant modification of the transport properties of the underlying superconducting thin film, resulting in a reprogrammable resistance state that enables a reversible and switchable vortex Hall effect. Our results highlight an effective and simple method of using ASI as an in situ reconfigurable nanoscale energy landscape to design reprogrammable superconducting electronics, which could also be applied to the in situ control of properties and functionalities in other magnetic particle systems, such as magnetic skyrmions.
在相互作用粒子介质中控制势能景观的能力可能会导致引人入胜的集体行为和创新功能。在此,我们利用风车人工自旋冰(ASI)结构的空间可重构磁势来调整超导涡旋的运动。风车ASI中磁荷的重构链结构以及磁荷与超导涡旋之间的强相互作用,使得底层超导薄膜的输运特性能够得到显著改变,从而产生一种可重新编程的电阻状态,实现可逆且可切换的涡旋霍尔效应。我们的结果突出了一种有效且简单的方法,即利用ASI作为原位可重构的纳米级能量景观来设计可重新编程的超导电子器件,这也可应用于其他磁性粒子系统(如磁斯格明子)中特性和功能的原位控制。